Ultronprime commited on
Commit
bcd0fb1
·
verified ·
1 Parent(s): b10dc0b

Upload find_and_create.sh with huggingface_hub

Browse files
Files changed (1) hide show
  1. find_and_create.sh +178 -0
find_and_create.sh ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # Script to find and copy setup files
3
+
4
+ echo "Searching for setup_claude.sh and SETUP_INSTRUCTIONS.md..."
5
+ find / -name "setup_claude.sh" 2>/dev/null
6
+ find / -name "SETUP_INSTRUCTIONS.md" 2>/dev/null
7
+
8
+ # Create the files directly in the current directory
9
+ echo "Creating files directly..."
10
+
11
+ # Create setup_claude.sh
12
+ cat > setup_claude.sh << 'EOL'
13
+ #!/bin/bash
14
+ # Setup script for Claude in VS Code on Hugging Face Space
15
+
16
+ echo "Setting up Python environment for working with Claude..."
17
+
18
+ # Create a virtual environment
19
+ python -m venv ~/claude-env
20
+
21
+ # Activate the virtual environment
22
+ source ~/claude-env/bin/activate
23
+
24
+ # Install required packages
25
+ pip install -U huggingface_hub gradio transformers datasets sentence-transformers faiss-cpu torch langchain
26
+
27
+ # Create initial files
28
+ mkdir -p ~/hf_implementation
29
+ cd ~/hf_implementation
30
+
31
+ # Create a simple Gradio app
32
+ cat > app.py << 'EOF'
33
+ import gradio as gr
34
+ import os
35
+
36
+ def process_file(file):
37
+ """Process an uploaded file."""
38
+ filename = os.path.basename(file.name)
39
+ return f"File {filename} would be processed using HF models."
40
+
41
+ def query_index(query):
42
+ """Query the RAG index."""
43
+ return f"Query: {query}\nResponse: This is a placeholder. The real implementation will use sentence-transformers and FAISS."
44
+
45
+ # Create the Gradio interface
46
+ with gr.Blocks(title="RAG Document Processor") as demo:
47
+ gr.Markdown("# RAG Document Processing System")
48
+
49
+ with gr.Tab("Upload & Process"):
50
+ file_input = gr.File(label="Upload Document")
51
+ process_button = gr.Button("Process Document")
52
+ output = gr.Textbox(label="Processing Result")
53
+ process_button.click(process_file, inputs=file_input, outputs=output)
54
+
55
+ with gr.Tab("Query Documents"):
56
+ query_input = gr.Textbox(label="Enter your query")
57
+ query_button = gr.Button("Search")
58
+ response = gr.Textbox(label="Response")
59
+ query_button.click(query_index, inputs=query_input, outputs=response)
60
+
61
+ # Launch the app
62
+ if __name__ == "__main__":
63
+ demo.launch(server_name="0.0.0.0", server_port=7860)
64
+ EOF
65
+
66
+ # Create a sample implementation file
67
+ cat > hf_embeddings.py << 'EOF'
68
+ """
69
+ Embeddings module using sentence-transformers.
70
+ """
71
+ from sentence_transformers import SentenceTransformer
72
+ import numpy as np
73
+
74
+ class HFEmbeddings:
75
+ def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
76
+ """Initialize the embedding model.
77
+
78
+ Args:
79
+ model_name: Name of the sentence-transformers model to use
80
+ """
81
+ self.model = SentenceTransformer(model_name)
82
+
83
+ def embed_texts(self, texts):
84
+ """Generate embeddings for a list of texts.
85
+
86
+ Args:
87
+ texts: List of strings to embed
88
+
89
+ Returns:
90
+ List of embedding vectors
91
+ """
92
+ return self.model.encode(texts)
93
+
94
+ def embed_query(self, query):
95
+ """Generate embedding for a query string.
96
+
97
+ Args:
98
+ query: Query string
99
+
100
+ Returns:
101
+ Embedding vector
102
+ """
103
+ return self.model.encode(query)
104
+ EOF
105
+
106
+ # Create a README for the implementation
107
+ cat > README.md << 'EOF'
108
+ # Hugging Face RAG Implementation
109
+
110
+ This directory contains the Hugging Face native implementation of the RAG system.
111
+
112
+ ## Files
113
+ - `app.py` - Gradio interface for the RAG system
114
+ - `hf_embeddings.py` - Embedding generation with sentence-transformers
115
+
116
+ ## Running the Application
117
+ ```bash
118
+ python app.py
119
+ ```
120
+
121
+ ## Implementation Plan
122
+ See `CLAUDE_HF.md` in the main directory for the complete implementation plan.
123
+ EOF
124
+
125
+ echo "Setup complete!"
126
+ echo "To use the environment:"
127
+ echo "1. Run 'source ~/claude-env/bin/activate'"
128
+ echo "2. Navigate to '~/hf_implementation'"
129
+ echo "3. Run 'python app.py' to start the Gradio interface"
130
+ EOL
131
+
132
+ # Make the script executable
133
+ chmod +x setup_claude.sh
134
+
135
+ # Create SETUP_INSTRUCTIONS.md
136
+ cat > SETUP_INSTRUCTIONS.md << 'EOL'
137
+ # Using Claude with Hugging Face Space
138
+
139
+ Since you're facing permission issues in the VS Code terminal, follow these steps:
140
+
141
+ 1. In the VS Code terminal, run:
142
+ ```bash
143
+ chmod +x setup_claude.sh
144
+ ./setup_claude.sh
145
+ ```
146
+
147
+ 2. This will:
148
+ - Create a Python virtual environment
149
+ - Install necessary packages
150
+ - Set up a basic implementation in ~/hf_implementation
151
+
152
+ 3. After installation, activate the environment:
153
+ ```bash
154
+ source ~/claude-env/bin/activate
155
+ ```
156
+
157
+ 4. Navigate to the implementation directory:
158
+ ```bash
159
+ cd ~/hf_implementation
160
+ ```
161
+
162
+ 5. Run the Gradio app:
163
+ ```bash
164
+ python app.py
165
+ ```
166
+
167
+ ## Next Steps
168
+
169
+ With this setup, you can:
170
+ 1. Create the HF implementation files
171
+ 2. Develop without root permissions
172
+ 3. Run your RAG application with Hugging Face models
173
+
174
+ Refer to CLAUDE_HF.md for the implementation details.
175
+ EOL
176
+
177
+ echo "Files created successfully in the current directory."
178
+ echo "You can now run: ./setup_claude.sh"