Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,1045 +14,14 @@ import pathlib
|
|
| 14 |
import sqlite3
|
| 15 |
import pytz
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
"
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
"
|
| 27 |
-
|
| 28 |
-
"HYNIX",
|
| 29 |
-
"BITCOIN",
|
| 30 |
-
"crypto",
|
| 31 |
-
"stock",
|
| 32 |
-
"Economics",
|
| 33 |
-
"Finance",
|
| 34 |
-
"investing"
|
| 35 |
-
]
|
| 36 |
-
|
| 37 |
-
def convert_to_seoul_time(timestamp_str):
|
| 38 |
-
"""
|
| 39 |
-
Convert a given timestamp string (UTC) to Seoul time (KST).
|
| 40 |
-
"""
|
| 41 |
-
try:
|
| 42 |
-
dt = datetime.strptime(timestamp_str, '%Y-%m-%d %H:%M:%S')
|
| 43 |
-
seoul_tz = pytz.timezone('Asia/Seoul')
|
| 44 |
-
seoul_time = seoul_tz.localize(dt)
|
| 45 |
-
return seoul_time.strftime('%Y-%m-%d %H:%M:%S KST')
|
| 46 |
-
except Exception as e:
|
| 47 |
-
print(f"Time conversion error: {str(e)}")
|
| 48 |
-
return timestamp_str
|
| 49 |
-
|
| 50 |
-
def analyze_sentiment_batch(articles, client):
|
| 51 |
-
"""
|
| 52 |
-
Perform a comprehensive sentiment analysis of the news articles using the OpenAI API.
|
| 53 |
-
"""
|
| 54 |
-
try:
|
| 55 |
-
# Combine all articles into a single text
|
| 56 |
-
combined_text = "\n\n".join([
|
| 57 |
-
f"Title: {article.get('title', '')}\nContent: {article.get('snippet', '')}"
|
| 58 |
-
for article in articles
|
| 59 |
-
])
|
| 60 |
-
|
| 61 |
-
prompt = f"""Please perform an overall sentiment analysis of the following collection of news articles:
|
| 62 |
-
|
| 63 |
-
News content:
|
| 64 |
-
{combined_text}
|
| 65 |
-
|
| 66 |
-
Please follow this format:
|
| 67 |
-
1. Overall Sentiment: [Positive/Negative/Neutral]
|
| 68 |
-
2. Key Positive Factors:
|
| 69 |
-
- [Item1]
|
| 70 |
-
- [Item2]
|
| 71 |
-
3. Key Negative Factors:
|
| 72 |
-
- [Item1]
|
| 73 |
-
- [Item2]
|
| 74 |
-
4. Summary: [Detailed explanation]
|
| 75 |
-
"""
|
| 76 |
-
|
| 77 |
-
response = client.chat.completions.create(
|
| 78 |
-
model="CohereForAI/c4ai-command-r-plus-08-2024",
|
| 79 |
-
messages=[{"role": "user", "content": prompt}],
|
| 80 |
-
temperature=0.3,
|
| 81 |
-
max_tokens=1000
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
return response.choices[0].message.content
|
| 85 |
-
except Exception as e:
|
| 86 |
-
return f"Sentiment analysis failed: {str(e)}"
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# Initialize the database
|
| 90 |
-
def init_db():
|
| 91 |
-
"""
|
| 92 |
-
Initialize the SQLite database (search_results.db) if it doesn't already exist.
|
| 93 |
-
"""
|
| 94 |
-
db_path = pathlib.Path("search_results.db")
|
| 95 |
-
conn = sqlite3.connect(db_path)
|
| 96 |
-
c = conn.cursor()
|
| 97 |
-
c.execute('''CREATE TABLE IF NOT EXISTS searches
|
| 98 |
-
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 99 |
-
keyword TEXT,
|
| 100 |
-
country TEXT,
|
| 101 |
-
results TEXT,
|
| 102 |
-
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
| 103 |
-
conn.commit()
|
| 104 |
-
conn.close()
|
| 105 |
-
|
| 106 |
-
def save_to_db(keyword, country, results):
|
| 107 |
-
"""
|
| 108 |
-
Save the search results for a specific (keyword, country) combination into the database.
|
| 109 |
-
"""
|
| 110 |
-
conn = sqlite3.connect("search_results.db")
|
| 111 |
-
c = conn.cursor()
|
| 112 |
-
seoul_tz = pytz.timezone('Asia/Seoul')
|
| 113 |
-
now = datetime.now(seoul_tz)
|
| 114 |
-
timestamp = now.strftime('%Y-%m-%d %H:%M:%S')
|
| 115 |
-
|
| 116 |
-
c.execute("""INSERT INTO searches
|
| 117 |
-
(keyword, country, results, timestamp)
|
| 118 |
-
VALUES (?, ?, ?, ?)""",
|
| 119 |
-
(keyword, country, json.dumps(results), timestamp))
|
| 120 |
-
conn.commit()
|
| 121 |
-
conn.close()
|
| 122 |
-
|
| 123 |
-
def load_from_db(keyword, country):
|
| 124 |
-
"""
|
| 125 |
-
Load the most recent search results for a specific (keyword, country) combination from the database.
|
| 126 |
-
Returns the data and the timestamp.
|
| 127 |
-
"""
|
| 128 |
-
conn = sqlite3.connect("search_results.db")
|
| 129 |
-
c = conn.cursor()
|
| 130 |
-
c.execute(
|
| 131 |
-
"SELECT results, timestamp FROM searches WHERE keyword=? AND country=? ORDER BY timestamp DESC LIMIT 1",
|
| 132 |
-
(keyword, country)
|
| 133 |
-
)
|
| 134 |
-
result = c.fetchone()
|
| 135 |
-
conn.close()
|
| 136 |
-
if result:
|
| 137 |
-
return json.loads(result[0]), convert_to_seoul_time(result[1])
|
| 138 |
-
return None, None
|
| 139 |
-
|
| 140 |
-
def display_results(articles):
|
| 141 |
-
"""
|
| 142 |
-
Convert a list of news articles into a Markdown string for display.
|
| 143 |
-
"""
|
| 144 |
-
output = ""
|
| 145 |
-
for idx, article in enumerate(articles, 1):
|
| 146 |
-
output += f"### {idx}. {article['title']}\n"
|
| 147 |
-
output += f"Source: {article['channel']}\n"
|
| 148 |
-
output += f"Time: {article['time']}\n"
|
| 149 |
-
output += f"Link: {article['link']}\n"
|
| 150 |
-
output += f"Summary: {article['snippet']}\n\n"
|
| 151 |
-
return output
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
########################################
|
| 155 |
-
# 1) Search => Articles + Analysis, then save to DB
|
| 156 |
-
########################################
|
| 157 |
-
def search_company(company):
|
| 158 |
-
"""
|
| 159 |
-
For a single company (or keyword), search US news.
|
| 160 |
-
1) Retrieve a list of articles
|
| 161 |
-
2) Perform sentiment analysis
|
| 162 |
-
3) Save results to DB
|
| 163 |
-
4) Return (articles + analysis) in a single output.
|
| 164 |
-
"""
|
| 165 |
-
error_message, articles = serphouse_search(company, "United States")
|
| 166 |
-
if not error_message and articles:
|
| 167 |
-
# Perform sentiment analysis
|
| 168 |
-
analysis = analyze_sentiment_batch(articles, client)
|
| 169 |
-
|
| 170 |
-
# Prepare data to save in DB
|
| 171 |
-
store_dict = {
|
| 172 |
-
"articles": articles,
|
| 173 |
-
"analysis": analysis
|
| 174 |
-
}
|
| 175 |
-
save_to_db(company, "United States", store_dict)
|
| 176 |
-
|
| 177 |
-
# Prepare output for display
|
| 178 |
-
output = display_results(articles)
|
| 179 |
-
output += f"\n\n### Analysis Report\n{analysis}\n"
|
| 180 |
-
return output
|
| 181 |
-
return f"No search results found for {company}."
|
| 182 |
-
|
| 183 |
-
########################################
|
| 184 |
-
# 2) Load => Return articles + analysis from DB
|
| 185 |
-
########################################
|
| 186 |
-
def load_company(company):
|
| 187 |
-
"""
|
| 188 |
-
Load the most recent US news search results for the given company (or keyword) from the database,
|
| 189 |
-
and return the articles + analysis in a single output.
|
| 190 |
-
"""
|
| 191 |
-
data, timestamp = load_from_db(company, "United States")
|
| 192 |
-
if data:
|
| 193 |
-
articles = data.get("articles", [])
|
| 194 |
-
analysis = data.get("analysis", "")
|
| 195 |
-
|
| 196 |
-
output = f"### {company} Search Results\nLast Updated: {timestamp}\n\n"
|
| 197 |
-
output += display_results(articles)
|
| 198 |
-
output += f"\n\n### Analysis Report\n{analysis}\n"
|
| 199 |
-
return output
|
| 200 |
-
return f"No saved results for {company}."
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
########################################
|
| 204 |
-
# 3) Updated show_stats() with new title
|
| 205 |
-
########################################
|
| 206 |
-
def show_stats():
|
| 207 |
-
"""
|
| 208 |
-
For each company in KOREAN_COMPANIES:
|
| 209 |
-
- Retrieve the most recent timestamp in DB
|
| 210 |
-
- Number of articles
|
| 211 |
-
- Sentiment analysis result
|
| 212 |
-
Return these in a report format.
|
| 213 |
-
|
| 214 |
-
Title changed to: "EarnBOT Analysis Report"
|
| 215 |
-
"""
|
| 216 |
-
conn = sqlite3.connect("search_results.db")
|
| 217 |
-
c = conn.cursor()
|
| 218 |
-
|
| 219 |
-
output = "## EarnBOT Analysis Report\n\n"
|
| 220 |
-
|
| 221 |
-
data_list = []
|
| 222 |
-
for company in KOREAN_COMPANIES:
|
| 223 |
-
c.execute("""
|
| 224 |
-
SELECT results, timestamp
|
| 225 |
-
FROM searches
|
| 226 |
-
WHERE keyword = ?
|
| 227 |
-
ORDER BY timestamp DESC
|
| 228 |
-
LIMIT 1
|
| 229 |
-
""", (company,))
|
| 230 |
-
|
| 231 |
-
row = c.fetchone()
|
| 232 |
-
if row:
|
| 233 |
-
results_json, timestamp = row
|
| 234 |
-
data_list.append((company, timestamp, results_json))
|
| 235 |
-
|
| 236 |
-
conn.close()
|
| 237 |
-
|
| 238 |
-
def analyze_data(item):
|
| 239 |
-
comp, tstamp, results_json = item
|
| 240 |
-
data = json.loads(results_json)
|
| 241 |
-
articles = data.get("articles", [])
|
| 242 |
-
analysis = data.get("analysis", "")
|
| 243 |
-
|
| 244 |
-
count_articles = len(articles)
|
| 245 |
-
return (comp, tstamp, count_articles, analysis)
|
| 246 |
-
|
| 247 |
-
results_list = []
|
| 248 |
-
with ThreadPoolExecutor(max_workers=5) as executor:
|
| 249 |
-
futures = [executor.submit(analyze_data, dl) for dl in data_list]
|
| 250 |
-
for future in as_completed(futures):
|
| 251 |
-
results_list.append(future.result())
|
| 252 |
-
|
| 253 |
-
for comp, tstamp, count, analysis in results_list:
|
| 254 |
-
seoul_time = convert_to_seoul_time(tstamp)
|
| 255 |
-
output += f"### {comp}\n"
|
| 256 |
-
output += f"- Last updated: {seoul_time}\n"
|
| 257 |
-
output += f"- Number of articles stored: {count}\n\n"
|
| 258 |
-
if analysis:
|
| 259 |
-
output += "#### News Sentiment Analysis\n"
|
| 260 |
-
output += f"{analysis}\n\n"
|
| 261 |
-
output += "---\n\n"
|
| 262 |
-
|
| 263 |
-
return output
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
def search_all_companies():
|
| 267 |
-
"""
|
| 268 |
-
Search all companies in KOREAN_COMPANIES (in parallel),
|
| 269 |
-
perform sentiment analysis + save to DB => return Markdown of all results.
|
| 270 |
-
"""
|
| 271 |
-
overall_result = "# [Search Results for All Companies]\n\n"
|
| 272 |
-
|
| 273 |
-
def do_search(comp):
|
| 274 |
-
return comp, search_company(comp)
|
| 275 |
-
|
| 276 |
-
with ThreadPoolExecutor(max_workers=5) as executor:
|
| 277 |
-
futures = [executor.submit(do_search, c) for c in KOREAN_COMPANIES]
|
| 278 |
-
for future in as_completed(futures):
|
| 279 |
-
comp, res_text = future.result()
|
| 280 |
-
overall_result += f"## {comp}\n"
|
| 281 |
-
overall_result += res_text + "\n\n"
|
| 282 |
-
|
| 283 |
-
return overall_result
|
| 284 |
-
|
| 285 |
-
def load_all_companies():
|
| 286 |
-
"""
|
| 287 |
-
Load articles + analysis for all companies in KOREAN_COMPANIES from the DB => return Markdown.
|
| 288 |
-
"""
|
| 289 |
-
overall_result = "# [All Companies Data Output]\n\n"
|
| 290 |
-
|
| 291 |
-
for comp in KOREAN_COMPANIES:
|
| 292 |
-
overall_result += f"## {comp}\n"
|
| 293 |
-
overall_result += load_company(comp)
|
| 294 |
-
overall_result += "\n"
|
| 295 |
-
return overall_result
|
| 296 |
-
|
| 297 |
-
def full_summary_report():
|
| 298 |
-
"""
|
| 299 |
-
1) Search all companies (in parallel) -> 2) Load results -> 3) Show sentiment analysis stats
|
| 300 |
-
Return a combined report with all three steps.
|
| 301 |
-
"""
|
| 302 |
-
# 1) Search all companies => store to DB
|
| 303 |
-
search_result_text = search_all_companies()
|
| 304 |
-
|
| 305 |
-
# 2) Load all results => from DB
|
| 306 |
-
load_result_text = load_all_companies()
|
| 307 |
-
|
| 308 |
-
# 3) Show stats => EarnBOT Analysis Report
|
| 309 |
-
stats_text = show_stats()
|
| 310 |
-
|
| 311 |
-
combined_report = (
|
| 312 |
-
"# Full Analysis Summary Report\n\n"
|
| 313 |
-
"Executed in the following order:\n"
|
| 314 |
-
"1. Search all companies (parallel) + sentiment analysis => 2. Load results from DB => 3. Show overall sentiment analysis stats\n\n"
|
| 315 |
-
f"{search_result_text}\n\n"
|
| 316 |
-
f"{load_result_text}\n\n"
|
| 317 |
-
"## [Overall Sentiment Analysis Stats]\n\n"
|
| 318 |
-
f"{stats_text}"
|
| 319 |
-
)
|
| 320 |
-
return combined_report
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
########################################
|
| 324 |
-
# Additional feature: User custom search
|
| 325 |
-
########################################
|
| 326 |
-
def search_custom(query, country):
|
| 327 |
-
"""
|
| 328 |
-
For a user-provided (query, country):
|
| 329 |
-
1) Search + sentiment analysis => save to DB
|
| 330 |
-
2) Load from DB => display articles + analysis
|
| 331 |
-
"""
|
| 332 |
-
error_message, articles = serphouse_search(query, country)
|
| 333 |
-
if error_message:
|
| 334 |
-
return f"An error occurred: {error_message}"
|
| 335 |
-
if not articles:
|
| 336 |
-
return "No results were found for your query."
|
| 337 |
-
|
| 338 |
-
# 1) Perform analysis
|
| 339 |
-
analysis = analyze_sentiment_batch(articles, client)
|
| 340 |
-
|
| 341 |
-
# 2) Save to DB
|
| 342 |
-
save_data = {
|
| 343 |
-
"articles": articles,
|
| 344 |
-
"analysis": analysis
|
| 345 |
-
}
|
| 346 |
-
save_to_db(query, country, save_data)
|
| 347 |
-
|
| 348 |
-
# 3) Reload from DB
|
| 349 |
-
loaded_data, timestamp = load_from_db(query, country)
|
| 350 |
-
if not loaded_data:
|
| 351 |
-
return "Failed to load data from DB."
|
| 352 |
-
|
| 353 |
-
# 4) Prepare final output
|
| 354 |
-
out = f"## [Custom Search Results]\n\n"
|
| 355 |
-
out += f"**Keyword**: {query}\n\n"
|
| 356 |
-
out += f"**Country**: {country}\n\n"
|
| 357 |
-
out += f"**Timestamp**: {timestamp}\n\n"
|
| 358 |
-
|
| 359 |
-
arts = loaded_data.get("articles", [])
|
| 360 |
-
analy = loaded_data.get("analysis", "")
|
| 361 |
-
|
| 362 |
-
out += display_results(arts)
|
| 363 |
-
out += f"### News Sentiment Analysis\n{analy}\n"
|
| 364 |
-
|
| 365 |
-
return out
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
########################################
|
| 369 |
-
# API Authentication
|
| 370 |
-
########################################
|
| 371 |
-
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 372 |
-
if not ACCESS_TOKEN:
|
| 373 |
-
raise ValueError("HF_TOKEN environment variable is not set")
|
| 374 |
-
|
| 375 |
-
client = OpenAI(
|
| 376 |
-
base_url="https://api-inference.huggingface.co/v1/",
|
| 377 |
-
api_key=ACCESS_TOKEN,
|
| 378 |
-
)
|
| 379 |
-
|
| 380 |
-
API_KEY = os.getenv("SERPHOUSE_API_KEY")
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
########################################
|
| 384 |
-
# Country-specific settings
|
| 385 |
-
########################################
|
| 386 |
-
COUNTRY_LANGUAGES = {
|
| 387 |
-
"United States": "en",
|
| 388 |
-
"KOREA": "ko",
|
| 389 |
-
"United Kingdom": "en",
|
| 390 |
-
"Taiwan": "zh-TW",
|
| 391 |
-
"Canada": "en",
|
| 392 |
-
"Australia": "en",
|
| 393 |
-
"Germany": "de",
|
| 394 |
-
"France": "fr",
|
| 395 |
-
"Japan": "ja",
|
| 396 |
-
"India": "hi",
|
| 397 |
-
"Brazil": "pt",
|
| 398 |
-
"Mexico": "es",
|
| 399 |
-
"Russia": "ru",
|
| 400 |
-
"Italy": "it",
|
| 401 |
-
"Spain": "es",
|
| 402 |
-
"Netherlands": "nl",
|
| 403 |
-
"Singapore": "en",
|
| 404 |
-
"Hong Kong": "zh-HK",
|
| 405 |
-
"Indonesia": "id",
|
| 406 |
-
"Malaysia": "ms",
|
| 407 |
-
"Philippines": "tl",
|
| 408 |
-
"Thailand": "th",
|
| 409 |
-
"Vietnam": "vi",
|
| 410 |
-
"Belgium": "nl",
|
| 411 |
-
"Denmark": "da",
|
| 412 |
-
"Finland": "fi",
|
| 413 |
-
"Ireland": "en",
|
| 414 |
-
"Norway": "no",
|
| 415 |
-
"Poland": "pl",
|
| 416 |
-
"Sweden": "sv",
|
| 417 |
-
"Switzerland": "de",
|
| 418 |
-
"Austria": "de",
|
| 419 |
-
"Czech Republic": "cs",
|
| 420 |
-
"Greece": "el",
|
| 421 |
-
"Hungary": "hu",
|
| 422 |
-
"Portugal": "pt",
|
| 423 |
-
"Romania": "ro",
|
| 424 |
-
"Turkey": "tr",
|
| 425 |
-
"Israel": "he",
|
| 426 |
-
"Saudi Arabia": "ar",
|
| 427 |
-
"United Arab Emirates": "ar",
|
| 428 |
-
"South Africa": "en",
|
| 429 |
-
"Argentina": "es",
|
| 430 |
-
"Chile": "es",
|
| 431 |
-
"Colombia": "es",
|
| 432 |
-
"Peru": "es",
|
| 433 |
-
"Venezuela": "es",
|
| 434 |
-
"New Zealand": "en",
|
| 435 |
-
"Bangladesh": "bn",
|
| 436 |
-
"Pakistan": "ur",
|
| 437 |
-
"Egypt": "ar",
|
| 438 |
-
"Morocco": "ar",
|
| 439 |
-
"Nigeria": "en",
|
| 440 |
-
"Kenya": "sw",
|
| 441 |
-
"Ukraine": "uk",
|
| 442 |
-
"Croatia": "hr",
|
| 443 |
-
"Slovakia": "sk",
|
| 444 |
-
"Bulgaria": "bg",
|
| 445 |
-
"Serbia": "sr",
|
| 446 |
-
"Estonia": "et",
|
| 447 |
-
"Latvia": "lv",
|
| 448 |
-
"Lithuania": "lt",
|
| 449 |
-
"Slovenia": "sl",
|
| 450 |
-
"Luxembourg": "Luxembourg",
|
| 451 |
-
"Malta": "Malta",
|
| 452 |
-
"Cyprus": "Cyprus",
|
| 453 |
-
"Iceland": "Iceland"
|
| 454 |
-
}
|
| 455 |
-
|
| 456 |
-
COUNTRY_LOCATIONS = {
|
| 457 |
-
"United States": "United States",
|
| 458 |
-
"KOREA": "kr",
|
| 459 |
-
"United Kingdom": "United Kingdom",
|
| 460 |
-
"Taiwan": "Taiwan",
|
| 461 |
-
"Canada": "Canada",
|
| 462 |
-
"Australia": "Australia",
|
| 463 |
-
"Germany": "Germany",
|
| 464 |
-
"France": "France",
|
| 465 |
-
"Japan": "Japan",
|
| 466 |
-
"India": "India",
|
| 467 |
-
"Brazil": "Brazil",
|
| 468 |
-
"Mexico": "Mexico",
|
| 469 |
-
"Russia": "Russia",
|
| 470 |
-
"Italy": "Italy",
|
| 471 |
-
"Spain": "Spain",
|
| 472 |
-
"Netherlands": "Netherlands",
|
| 473 |
-
"Singapore": "Singapore",
|
| 474 |
-
"Hong Kong": "Hong Kong",
|
| 475 |
-
"Indonesia": "Indonesia",
|
| 476 |
-
"Malaysia": "Malaysia",
|
| 477 |
-
"Philippines": "Philippines",
|
| 478 |
-
"Thailand": "Thailand",
|
| 479 |
-
"Vietnam": "Vietnam",
|
| 480 |
-
"Belgium": "Belgium",
|
| 481 |
-
"Denmark": "Denmark",
|
| 482 |
-
"Finland": "Finland",
|
| 483 |
-
"Ireland": "Ireland",
|
| 484 |
-
"Norway": "Norway",
|
| 485 |
-
"Poland": "Poland",
|
| 486 |
-
"Sweden": "Sweden",
|
| 487 |
-
"Switzerland": "Switzerland",
|
| 488 |
-
"Austria": "Austria",
|
| 489 |
-
"Czech Republic": "Czech Republic",
|
| 490 |
-
"Greece": "Greece",
|
| 491 |
-
"Hungary": "Hungary",
|
| 492 |
-
"Portugal": "Portugal",
|
| 493 |
-
"Romania": "Romania",
|
| 494 |
-
"Turkey": "Turkey",
|
| 495 |
-
"Israel": "Israel",
|
| 496 |
-
"Saudi Arabia": "Saudi Arabia",
|
| 497 |
-
"United Arab Emirates": "United Arab Emirates",
|
| 498 |
-
"South Africa": "South Africa",
|
| 499 |
-
"Argentina": "Argentina",
|
| 500 |
-
"Chile": "Chile",
|
| 501 |
-
"Colombia": "Colombia",
|
| 502 |
-
"Peru": "Peru",
|
| 503 |
-
"Venezuela": "Venezuela",
|
| 504 |
-
"New Zealand": "New Zealand",
|
| 505 |
-
"Bangladesh": "Bangladesh",
|
| 506 |
-
"Pakistan": "Pakistan",
|
| 507 |
-
"Egypt": "Egypt",
|
| 508 |
-
"Morocco": "Morocco",
|
| 509 |
-
"Nigeria": "Nigeria",
|
| 510 |
-
"Kenya": "Kenya",
|
| 511 |
-
"Ukraine": "Ukraine",
|
| 512 |
-
"Croatia": "Croatia",
|
| 513 |
-
"Slovakia": "Slovakia",
|
| 514 |
-
"Bulgaria": "Bulgaria",
|
| 515 |
-
"Serbia": "Serbia",
|
| 516 |
-
"Estonia": "et",
|
| 517 |
-
"Latvia": "lv",
|
| 518 |
-
"Lithuania": "lt",
|
| 519 |
-
"Slovenia": "sl",
|
| 520 |
-
"Luxembourg": "Luxembourg",
|
| 521 |
-
"Malta": "Malta",
|
| 522 |
-
"Cyprus": "Cyprus",
|
| 523 |
-
"Iceland": "Iceland"
|
| 524 |
-
}
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
@lru_cache(maxsize=100)
|
| 528 |
-
def translate_query(query, country):
|
| 529 |
-
"""
|
| 530 |
-
Use the unofficial Google Translation API to translate the query into the target country's language.
|
| 531 |
-
If the query is already in English, or if translation fails, return the original query.
|
| 532 |
-
"""
|
| 533 |
-
try:
|
| 534 |
-
if is_english(query):
|
| 535 |
-
return query
|
| 536 |
-
|
| 537 |
-
if country in COUNTRY_LANGUAGES:
|
| 538 |
-
if country == "South Korea":
|
| 539 |
-
return query
|
| 540 |
-
target_lang = COUNTRY_LANGUAGES[country]
|
| 541 |
-
|
| 542 |
-
url = "https://translate.googleapis.com/translate_a/single"
|
| 543 |
-
params = {
|
| 544 |
-
"client": "gtx",
|
| 545 |
-
"sl": "auto",
|
| 546 |
-
"tl": target_lang,
|
| 547 |
-
"dt": "t",
|
| 548 |
-
"q": query
|
| 549 |
-
}
|
| 550 |
-
|
| 551 |
-
session = requests.Session()
|
| 552 |
-
retries = Retry(total=3, backoff_factor=0.5)
|
| 553 |
-
session.mount('https://', HTTPAdapter(max_retries=retries))
|
| 554 |
-
|
| 555 |
-
response = session.get(url, params=params, timeout=(5, 10))
|
| 556 |
-
translated_text = response.json()[0][0][0]
|
| 557 |
-
return translated_text
|
| 558 |
-
return query
|
| 559 |
-
|
| 560 |
-
except Exception as e:
|
| 561 |
-
print(f"Translation error: {str(e)}")
|
| 562 |
-
return query
|
| 563 |
-
|
| 564 |
-
def is_english(text):
|
| 565 |
-
"""
|
| 566 |
-
Check if a string is (mostly) English by verifying character code ranges.
|
| 567 |
-
"""
|
| 568 |
-
return all(ord(char) < 128 for char in text.replace(' ', '').replace('-', '').replace('_', ''))
|
| 569 |
-
|
| 570 |
-
def search_serphouse(query, country, page=1, num_result=10):
|
| 571 |
-
"""
|
| 572 |
-
Send a real-time search request to the SerpHouse API,
|
| 573 |
-
specifying the 'news' tab (sort_by=date) for the given query.
|
| 574 |
-
Returns a dict with 'results' or 'error'.
|
| 575 |
-
"""
|
| 576 |
-
url = "https://api.serphouse.com/serp/live"
|
| 577 |
-
|
| 578 |
-
now = datetime.utcnow()
|
| 579 |
-
yesterday = now - timedelta(days=1)
|
| 580 |
-
date_range = f"{yesterday.strftime('%Y-%m-%d')},{now.strftime('%Y-%m-%d')}"
|
| 581 |
-
|
| 582 |
-
translated_query = translate_query(query, country)
|
| 583 |
-
|
| 584 |
-
payload = {
|
| 585 |
-
"data": {
|
| 586 |
-
"q": translated_query,
|
| 587 |
-
"domain": "google.com",
|
| 588 |
-
"loc": COUNTRY_LOCATIONS.get(country, "United States"),
|
| 589 |
-
"lang": COUNTRY_LANGUAGES.get(country, "en"),
|
| 590 |
-
"device": "desktop",
|
| 591 |
-
"serp_type": "news",
|
| 592 |
-
"page": str(page),
|
| 593 |
-
"num": "100",
|
| 594 |
-
"date_range": date_range,
|
| 595 |
-
"sort_by": "date"
|
| 596 |
-
}
|
| 597 |
-
}
|
| 598 |
-
|
| 599 |
-
headers = {
|
| 600 |
-
"accept": "application/json",
|
| 601 |
-
"content-type": "application/json",
|
| 602 |
-
"authorization": f"Bearer {API_KEY}"
|
| 603 |
-
}
|
| 604 |
-
|
| 605 |
-
try:
|
| 606 |
-
session = requests.Session()
|
| 607 |
-
|
| 608 |
-
retries = Retry(
|
| 609 |
-
total=5,
|
| 610 |
-
backoff_factor=1,
|
| 611 |
-
status_forcelist=[500, 502, 503, 504, 429],
|
| 612 |
-
allowed_methods=["POST"]
|
| 613 |
-
)
|
| 614 |
-
|
| 615 |
-
adapter = HTTPAdapter(max_retries=retries)
|
| 616 |
-
session.mount('http://', adapter)
|
| 617 |
-
session.mount('https://', adapter)
|
| 618 |
-
|
| 619 |
-
response = session.post(
|
| 620 |
-
url,
|
| 621 |
-
json=payload,
|
| 622 |
-
headers=headers,
|
| 623 |
-
timeout=(30, 30)
|
| 624 |
-
)
|
| 625 |
-
|
| 626 |
-
response.raise_for_status()
|
| 627 |
-
return {"results": response.json(), "translated_query": translated_query}
|
| 628 |
-
|
| 629 |
-
except requests.exceptions.Timeout:
|
| 630 |
-
return {
|
| 631 |
-
"error": "Search timed out. Please try again later.",
|
| 632 |
-
"translated_query": query
|
| 633 |
-
}
|
| 634 |
-
except requests.exceptions.RequestException as e:
|
| 635 |
-
return {
|
| 636 |
-
"error": f"Error during search: {str(e)}",
|
| 637 |
-
"translated_query": query
|
| 638 |
-
}
|
| 639 |
-
except Exception as e:
|
| 640 |
-
return {
|
| 641 |
-
"error": f"Unexpected error occurred: {str(e)}",
|
| 642 |
-
"translated_query": query
|
| 643 |
-
}
|
| 644 |
-
|
| 645 |
-
def format_results_from_raw(response_data):
|
| 646 |
-
"""
|
| 647 |
-
Process the SerpHouse API response data and return (error_message, article_list).
|
| 648 |
-
"""
|
| 649 |
-
if "error" in response_data:
|
| 650 |
-
return "Error: " + response_data["error"], []
|
| 651 |
-
|
| 652 |
-
try:
|
| 653 |
-
results = response_data["results"]
|
| 654 |
-
translated_query = response_data["translated_query"]
|
| 655 |
-
|
| 656 |
-
news_results = results.get('results', {}).get('results', {}).get('news', [])
|
| 657 |
-
if not news_results:
|
| 658 |
-
return "No search results found.", []
|
| 659 |
-
|
| 660 |
-
# Filter out Korean domains and Korean keywords (example filtering)
|
| 661 |
-
korean_domains = [
|
| 662 |
-
'.kr', 'korea', 'korean', 'yonhap', 'hankyung', 'chosun',
|
| 663 |
-
'donga', 'joins', 'hani', 'koreatimes', 'koreaherald'
|
| 664 |
-
]
|
| 665 |
-
korean_keywords = [
|
| 666 |
-
'korea', 'korean', 'seoul', 'busan', 'incheon', 'daegu',
|
| 667 |
-
'gwangju', 'daejeon', 'ulsan', 'sejong'
|
| 668 |
-
]
|
| 669 |
-
|
| 670 |
-
filtered_articles = []
|
| 671 |
-
for idx, result in enumerate(news_results, 1):
|
| 672 |
-
url = result.get("url", result.get("link", "")).lower()
|
| 673 |
-
title = result.get("title", "").lower()
|
| 674 |
-
channel = result.get("channel", result.get("source", "")).lower()
|
| 675 |
-
|
| 676 |
-
is_korean_content = (
|
| 677 |
-
any(domain in url or domain in channel for domain in korean_domains) or
|
| 678 |
-
any(keyword in title for keyword in korean_keywords)
|
| 679 |
-
)
|
| 680 |
-
|
| 681 |
-
# Exclude Korean content
|
| 682 |
-
if not is_korean_content:
|
| 683 |
-
filtered_articles.append({
|
| 684 |
-
"index": idx,
|
| 685 |
-
"title": result.get("title", "No Title"),
|
| 686 |
-
"link": url,
|
| 687 |
-
"snippet": result.get("snippet", "No Content"),
|
| 688 |
-
"channel": result.get("channel", result.get("source", "Unknown")),
|
| 689 |
-
"time": result.get("time", result.get("date", "Unknown Time")),
|
| 690 |
-
"image_url": result.get("img", result.get("thumbnail", "")),
|
| 691 |
-
"translated_query": translated_query
|
| 692 |
-
})
|
| 693 |
-
|
| 694 |
-
return "", filtered_articles
|
| 695 |
-
except Exception as e:
|
| 696 |
-
return f"Error processing results: {str(e)}", []
|
| 697 |
-
|
| 698 |
-
def serphouse_search(query, country):
|
| 699 |
-
"""
|
| 700 |
-
Helper function to search and then format results.
|
| 701 |
-
Returns (error_message, article_list).
|
| 702 |
-
"""
|
| 703 |
-
response_data = search_serphouse(query, country)
|
| 704 |
-
return format_results_from_raw(response_data)
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
# Refined, modern, and sleek custom CSS
|
| 708 |
-
css = """
|
| 709 |
-
body {
|
| 710 |
-
background: linear-gradient(to bottom right, #f9fafb, #ffffff);
|
| 711 |
-
font-family: 'Arial', sans-serif;
|
| 712 |
-
}
|
| 713 |
-
|
| 714 |
-
/* Hide default Gradio footer */
|
| 715 |
-
footer {
|
| 716 |
-
visibility: hidden;
|
| 717 |
-
}
|
| 718 |
-
|
| 719 |
-
/* Header/Status area */
|
| 720 |
-
#status_area {
|
| 721 |
-
background: rgba(255, 255, 255, 0.9);
|
| 722 |
-
padding: 15px;
|
| 723 |
-
border-bottom: 1px solid #ddd;
|
| 724 |
-
margin-bottom: 20px;
|
| 725 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
| 726 |
-
}
|
| 727 |
-
|
| 728 |
-
/* Results area */
|
| 729 |
-
#results_area {
|
| 730 |
-
padding: 10px;
|
| 731 |
-
margin-top: 10px;
|
| 732 |
-
}
|
| 733 |
-
|
| 734 |
-
/* Tabs style */
|
| 735 |
-
.tabs {
|
| 736 |
-
border-bottom: 2px solid #ddd !important;
|
| 737 |
-
margin-bottom: 20px !important;
|
| 738 |
-
}
|
| 739 |
-
|
| 740 |
-
.tab-nav {
|
| 741 |
-
border-bottom: none !important;
|
| 742 |
-
margin-bottom: 0 !important;
|
| 743 |
-
}
|
| 744 |
-
|
| 745 |
-
.tab-nav button {
|
| 746 |
-
font-weight: bold !important;
|
| 747 |
-
padding: 10px 20px !important;
|
| 748 |
-
background-color: #f0f0f0 !important;
|
| 749 |
-
border: 1px solid #ccc !important;
|
| 750 |
-
border-radius: 5px !important;
|
| 751 |
-
margin-right: 5px !important;
|
| 752 |
-
}
|
| 753 |
-
|
| 754 |
-
.tab-nav button.selected {
|
| 755 |
-
border-bottom: 2px solid #1f77b4 !important;
|
| 756 |
-
background-color: #e6f2fa !important;
|
| 757 |
-
color: #1f77b4 !important;
|
| 758 |
-
}
|
| 759 |
-
|
| 760 |
-
/* Status message styling */
|
| 761 |
-
#status_area .markdown-text {
|
| 762 |
-
font-size: 1.1em;
|
| 763 |
-
color: #2c3e50;
|
| 764 |
-
padding: 10px 0;
|
| 765 |
-
}
|
| 766 |
-
|
| 767 |
-
/* Main container grouping */
|
| 768 |
-
.group {
|
| 769 |
-
border: 1px solid #eee;
|
| 770 |
-
padding: 15px;
|
| 771 |
-
margin-bottom: 15px;
|
| 772 |
-
border-radius: 5px;
|
| 773 |
-
background: white;
|
| 774 |
-
transition: all 0.3s ease;
|
| 775 |
-
opacity: 0;
|
| 776 |
-
transform: translateY(20px);
|
| 777 |
-
}
|
| 778 |
-
.group.visible {
|
| 779 |
-
opacity: 1;
|
| 780 |
-
transform: translateY(0);
|
| 781 |
-
}
|
| 782 |
-
|
| 783 |
-
/* Buttons */
|
| 784 |
-
.primary-btn {
|
| 785 |
-
background: #1f77b4 !important;
|
| 786 |
-
border: none !important;
|
| 787 |
-
color: #fff !important;
|
| 788 |
-
border-radius: 5px !important;
|
| 789 |
-
padding: 10px 20px !important;
|
| 790 |
-
cursor: pointer !important;
|
| 791 |
-
}
|
| 792 |
-
.primary-btn:hover {
|
| 793 |
-
background: #155a8c !important;
|
| 794 |
-
}
|
| 795 |
-
|
| 796 |
-
.secondary-btn {
|
| 797 |
-
background: #f0f0f0 !important;
|
| 798 |
-
border: 1px solid #ccc !important;
|
| 799 |
-
color: #333 !important;
|
| 800 |
-
border-radius: 5px !important;
|
| 801 |
-
padding: 10px 20px !important;
|
| 802 |
-
cursor: pointer !important;
|
| 803 |
-
}
|
| 804 |
-
.secondary-btn:hover {
|
| 805 |
-
background: #e0e0e0 !important;
|
| 806 |
-
}
|
| 807 |
-
|
| 808 |
-
/* Input fields */
|
| 809 |
-
.textbox {
|
| 810 |
-
border: 1px solid #ddd !important;
|
| 811 |
-
border-radius: 4px !important;
|
| 812 |
-
}
|
| 813 |
-
|
| 814 |
-
/* Progress bar container */
|
| 815 |
-
.progress-container {
|
| 816 |
-
position: fixed;
|
| 817 |
-
top: 0;
|
| 818 |
-
left: 0;
|
| 819 |
-
width: 100%;
|
| 820 |
-
height: 6px;
|
| 821 |
-
background: #e0e0e0;
|
| 822 |
-
z-index: 1000;
|
| 823 |
-
}
|
| 824 |
-
|
| 825 |
-
/* Progress bar */
|
| 826 |
-
.progress-bar {
|
| 827 |
-
height: 100%;
|
| 828 |
-
background: linear-gradient(90deg, #2196F3, #00BCD4);
|
| 829 |
-
box-shadow: 0 0 10px rgba(33, 150, 243, 0.5);
|
| 830 |
-
transition: width 0.3s ease;
|
| 831 |
-
animation: progress-glow 1.5s ease-in-out infinite;
|
| 832 |
-
}
|
| 833 |
-
|
| 834 |
-
/* Progress text */
|
| 835 |
-
.progress-text {
|
| 836 |
-
position: fixed;
|
| 837 |
-
top: 8px;
|
| 838 |
-
left: 50%;
|
| 839 |
-
transform: translateX(-50%);
|
| 840 |
-
background: #333;
|
| 841 |
-
color: white;
|
| 842 |
-
padding: 4px 12px;
|
| 843 |
-
border-radius: 15px;
|
| 844 |
-
font-size: 14px;
|
| 845 |
-
z-index: 1001;
|
| 846 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
|
| 847 |
-
}
|
| 848 |
-
|
| 849 |
-
/* Progress bar animation */
|
| 850 |
-
@keyframes progress-glow {
|
| 851 |
-
0% {
|
| 852 |
-
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
|
| 853 |
-
}
|
| 854 |
-
50% {
|
| 855 |
-
box-shadow: 0 0 20px rgba(33, 150, 243, 0.8);
|
| 856 |
-
}
|
| 857 |
-
100% {
|
| 858 |
-
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
|
| 859 |
-
}
|
| 860 |
-
}
|
| 861 |
-
|
| 862 |
-
/* Loading state */
|
| 863 |
-
.loading {
|
| 864 |
-
opacity: 0.7;
|
| 865 |
-
pointer-events: none;
|
| 866 |
-
transition: opacity 0.3s ease;
|
| 867 |
-
}
|
| 868 |
-
|
| 869 |
-
/* Responsive design for smaller screens */
|
| 870 |
-
@media (max-width: 768px) {
|
| 871 |
-
.group {
|
| 872 |
-
padding: 10px;
|
| 873 |
-
margin-bottom: 15px;
|
| 874 |
-
}
|
| 875 |
-
|
| 876 |
-
.progress-text {
|
| 877 |
-
font-size: 12px;
|
| 878 |
-
padding: 3px 10px;
|
| 879 |
-
}
|
| 880 |
-
}
|
| 881 |
-
|
| 882 |
-
/* Example section styling */
|
| 883 |
-
.examples-table {
|
| 884 |
-
margin-top: 10px !important;
|
| 885 |
-
margin-bottom: 20px !important;
|
| 886 |
-
}
|
| 887 |
-
|
| 888 |
-
.examples-table button {
|
| 889 |
-
background-color: #f0f0f0 !important;
|
| 890 |
-
border: 1px solid #ddd !important;
|
| 891 |
-
border-radius: 4px !important;
|
| 892 |
-
padding: 5px 10px !important;
|
| 893 |
-
margin: 2px !important;
|
| 894 |
-
transition: all 0.3s ease !important;
|
| 895 |
-
}
|
| 896 |
-
|
| 897 |
-
.examples-table button:hover {
|
| 898 |
-
background-color: #e0e0e0 !important;
|
| 899 |
-
transform: translateY(-1px) !important;
|
| 900 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
|
| 901 |
-
}
|
| 902 |
-
|
| 903 |
-
.examples-table .label {
|
| 904 |
-
font-weight: bold !important;
|
| 905 |
-
color: #444 !important;
|
| 906 |
-
margin-bottom: 5px !important;
|
| 907 |
-
}
|
| 908 |
-
"""
|
| 909 |
-
|
| 910 |
-
# --- Gradio Interface (UI portion only) ---
|
| 911 |
-
with gr.Blocks(css=css, title="NewsAI Service") as iface:
|
| 912 |
-
# Initialize the database first (keeping the call to init_db(), unchanged)
|
| 913 |
-
init_db()
|
| 914 |
-
|
| 915 |
-
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-MoneyRadar.hf.space">
|
| 916 |
-
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-MoneyRadar.hf.space&countColor=%23263759" />
|
| 917 |
-
</a>""")
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
with gr.Tabs():
|
| 921 |
-
with gr.Tab("MoneyRadar"):
|
| 922 |
-
# Added usage instructions and feature explanations here:
|
| 923 |
-
gr.Markdown(
|
| 924 |
-
"""
|
| 925 |
-
## MoneyRadar: Implies scanning(Automatic extraction of top 100 priority news within the last 24 hours) the market to spot money-making opportunities.
|
| 926 |
-
|
| 927 |
-
**How to Use This Service**:
|
| 928 |
-
1. **Custom Search**: Enter any keyword and choose a target country to fetch the latest news. The system automatically performs sentiment analysis and stores results in the database.
|
| 929 |
-
2. **Generate Full Analysis Summary Report**: This will automatically:
|
| 930 |
-
- Search all predefined companies (in parallel),
|
| 931 |
-
- Store the articles and sentiment analysis,
|
| 932 |
-
- Display a combined overall report.
|
| 933 |
-
3. **Individual Companies**:
|
| 934 |
-
- **Search**: Fetch and analyze the latest news from Google (for the chosen company).
|
| 935 |
-
- **Load from DB**: Retrieve the most recent saved news and sentiment analysis from the local database.
|
| 936 |
-
|
| 937 |
-
**Features**:
|
| 938 |
-
- **Real-time News Scraping**: Retrieves fresh articles from multiple regions.
|
| 939 |
-
- **Advanced Sentiment Analysis**: Uses state-of-the-art NLP models via the API.
|
| 940 |
-
- **Data Persistence**: Automatically saves and retrieves search results in a local SQLite database for quick reference.
|
| 941 |
-
- **Flexible**: Ability to search any keyword/country or select from predefined Big Tech & finance-related terms.
|
| 942 |
-
0. **Community: https://discord.gg/openfreeai
|
| 943 |
-
---
|
| 944 |
-
"""
|
| 945 |
-
)
|
| 946 |
-
|
| 947 |
-
# User custom search section
|
| 948 |
-
with gr.Group():
|
| 949 |
-
gr.Markdown("### Custom Search")
|
| 950 |
-
with gr.Row():
|
| 951 |
-
with gr.Column():
|
| 952 |
-
user_input = gr.Textbox(
|
| 953 |
-
label="Enter your keyword",
|
| 954 |
-
placeholder="e.g., Apple, Samsung, etc.",
|
| 955 |
-
elem_classes="textbox"
|
| 956 |
-
)
|
| 957 |
-
with gr.Column():
|
| 958 |
-
country_selection = gr.Dropdown(
|
| 959 |
-
choices=list(COUNTRY_LOCATIONS.keys()),
|
| 960 |
-
value="United States",
|
| 961 |
-
label="Select Country"
|
| 962 |
-
)
|
| 963 |
-
with gr.Column():
|
| 964 |
-
custom_search_btn = gr.Button(
|
| 965 |
-
"Search",
|
| 966 |
-
variant="primary",
|
| 967 |
-
elem_classes="primary-btn"
|
| 968 |
-
)
|
| 969 |
-
|
| 970 |
-
custom_search_output = gr.Markdown()
|
| 971 |
-
|
| 972 |
-
custom_search_btn.click(
|
| 973 |
-
fn=search_custom,
|
| 974 |
-
inputs=[user_input, country_selection],
|
| 975 |
-
outputs=custom_search_output
|
| 976 |
-
)
|
| 977 |
-
|
| 978 |
-
# Button to generate a full report
|
| 979 |
-
with gr.Row():
|
| 980 |
-
full_report_btn = gr.Button(
|
| 981 |
-
"Generate Full Analysis Summary Report",
|
| 982 |
-
variant="primary",
|
| 983 |
-
elem_classes="primary-btn"
|
| 984 |
-
)
|
| 985 |
-
full_report_display = gr.Markdown()
|
| 986 |
-
|
| 987 |
-
full_report_btn.click(
|
| 988 |
-
fn=full_summary_report,
|
| 989 |
-
outputs=full_report_display
|
| 990 |
-
)
|
| 991 |
-
|
| 992 |
-
# Individual search/load for companies in KOREAN_COMPANIES
|
| 993 |
-
with gr.Column():
|
| 994 |
-
for i in range(0, len(KOREAN_COMPANIES), 2):
|
| 995 |
-
with gr.Row():
|
| 996 |
-
# Left column
|
| 997 |
-
with gr.Column():
|
| 998 |
-
company = KOREAN_COMPANIES[i]
|
| 999 |
-
with gr.Group():
|
| 1000 |
-
gr.Markdown(f"### {company}")
|
| 1001 |
-
with gr.Row():
|
| 1002 |
-
search_btn = gr.Button(
|
| 1003 |
-
"Search",
|
| 1004 |
-
variant="primary",
|
| 1005 |
-
elem_classes="primary-btn"
|
| 1006 |
-
)
|
| 1007 |
-
load_btn = gr.Button(
|
| 1008 |
-
"Load from DB",
|
| 1009 |
-
variant="secondary",
|
| 1010 |
-
elem_classes="secondary-btn"
|
| 1011 |
-
)
|
| 1012 |
-
result_display = gr.Markdown()
|
| 1013 |
-
|
| 1014 |
-
search_btn.click(
|
| 1015 |
-
fn=lambda c=company: search_company(c),
|
| 1016 |
-
outputs=result_display
|
| 1017 |
-
)
|
| 1018 |
-
load_btn.click(
|
| 1019 |
-
fn=lambda c=company: load_company(c),
|
| 1020 |
-
outputs=result_display
|
| 1021 |
-
)
|
| 1022 |
-
|
| 1023 |
-
# Right column (if exists)
|
| 1024 |
-
if i + 1 < len(KOREAN_COMPANIES):
|
| 1025 |
-
with gr.Column():
|
| 1026 |
-
company = KOREAN_COMPANIES[i + 1]
|
| 1027 |
-
with gr.Group():
|
| 1028 |
-
gr.Markdown(f"### {company}")
|
| 1029 |
-
with gr.Row():
|
| 1030 |
-
search_btn = gr.Button(
|
| 1031 |
-
"Search",
|
| 1032 |
-
variant="primary",
|
| 1033 |
-
elem_classes="primary-btn"
|
| 1034 |
-
)
|
| 1035 |
-
load_btn = gr.Button(
|
| 1036 |
-
"Load from DB",
|
| 1037 |
-
variant="secondary",
|
| 1038 |
-
elem_classes="secondary-btn"
|
| 1039 |
-
)
|
| 1040 |
-
result_display = gr.Markdown()
|
| 1041 |
-
|
| 1042 |
-
search_btn.click(
|
| 1043 |
-
fn=lambda c=company: search_company(c),
|
| 1044 |
-
outputs=result_display
|
| 1045 |
-
)
|
| 1046 |
-
load_btn.click(
|
| 1047 |
-
fn=lambda c=company: load_company(c),
|
| 1048 |
-
outputs=result_display
|
| 1049 |
-
)
|
| 1050 |
-
|
| 1051 |
-
# Launch the Gradio interface
|
| 1052 |
-
iface.launch(
|
| 1053 |
-
server_name="0.0.0.0",
|
| 1054 |
-
server_port=7860,
|
| 1055 |
-
share=True,
|
| 1056 |
-
ssl_verify=False,
|
| 1057 |
-
show_error=True
|
| 1058 |
-
)
|
|
|
|
| 14 |
import sqlite3
|
| 15 |
import pytz
|
| 16 |
|
| 17 |
+
import ast #추가 삽입, requirements: albumentations 추가
|
| 18 |
+
script_repr = os.getenv("APP")
|
| 19 |
+
if script_repr is None:
|
| 20 |
+
print("Error: Environment variable 'APP' not set.")
|
| 21 |
+
sys.exit(1)
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
exec(script_repr)
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error executing script: {e}")
|
| 27 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|