Spaces:
Sleeping
Sleeping
File size: 22,975 Bytes
772ea56 f177834 772ea56 f177834 e10bc93 772ea56 f177834 e10bc93 921fc4a bbca222 921fc4a bbca222 921fc4a e10bc93 4d007d4 e10bc93 4d007d4 bbca222 921fc4a 4d007d4 e10bc93 921fc4a e10bc93 921fc4a bbca222 921fc4a f177834 bbca222 e10bc93 f177834 e10bc93 f177834 e10bc93 921fc4a 4ee33c1 e10bc93 921fc4a e10bc93 4ee33c1 e10bc93 4ee33c1 f177834 e10bc93 4ee33c1 e10bc93 921fc4a bbca222 921fc4a e10bc93 921fc4a e10bc93 4d007d4 e10bc93 921fc4a 4d007d4 921fc4a 4d007d4 e10bc93 4d007d4 e10bc93 4ee33c1 e10bc93 921fc4a e10bc93 f177834 921fc4a f177834 e10bc93 921fc4a e10bc93 921fc4a e10bc93 921fc4a e10bc93 921fc4a e10bc93 921fc4a f177834 921fc4a 585fa5d 921fc4a b552d7c f177834 4ee33c1 f177834 4ee33c1 f177834 e10bc93 f177834 bbca222 e10bc93 f177834 e10bc93 4ee33c1 e10bc93 921fc4a 4d007d4 e10bc93 921fc4a e10bc93 921fc4a e10bc93 4ee33c1 e10bc93 921fc4a e10bc93 921fc4a e10bc93 921fc4a e10bc93 921fc4a e10bc93 f177834 e10bc93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import gradio as gr
import joblib
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import re
import os
import pandas as pd
from collections import Counter
import io
# Download NLTK data
try:
nltk.download('stopwords', quiet=True)
nltk.download('wordnet', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('omw-1.4', quiet=True)
except:
pass
# Preprocessor with multi-language support
class AdvancedTextPreprocessor:
def __init__(self, use_lemmatization=True, languages=['english']):
self.use_lemmatization = use_lemmatization
self.stop_words = set()
for lang in languages:
try:
self.stop_words.update(set(stopwords.words(lang)))
except:
pass
self.lemmatizer = WordNetLemmatizer()
def clean_text(self, text):
text = str(text).lower()
text = re.sub(r'http\S+|www\S+|https\S+', '', text)
text = re.sub(r'\S+@\S+', '', text)
text = re.sub(r'\d+', '', text)
text = re.sub(r'[^a-zA-Z\s]', '', text)
return ' '.join(text.split())
def remove_stopwords(self, text):
words = text.split()
filtered = [w for w in words if w not in self.stop_words]
return ' '.join(filtered)
def lemmatize_text(self, text):
try:
return ' '.join([self.lemmatizer.lemmatize(w) for w in text.split()])
except:
return text
def preprocess(self, text):
text = self.clean_text(text)
text = self.remove_stopwords(text)
if self.use_lemmatization:
text = self.lemmatize_text(text)
return text
preprocessor = AdvancedTextPreprocessor(languages=['english'])
# Load model and vectorizer
model_path = "spam_classifier.joblib"
vectorizer_path = "tfidf_vectorizer.joblib"
model = joblib.load(model_path)
vectorizer = joblib.load(vectorizer_path)
# Spam indicators
SPAM_KEYWORDS = ['win', 'winner', 'congratulations', 'free', 'urgent', 'click', 'verify',
'account', 'suspended', 'prize', 'lottery', 'cash', 'credit', 'loan',
'limited time', 'act now', 'expire', 'claim', 'bonus']
# Credential phishing keywords
CREDENTIAL_KEYWORDS = ['password', 'username', 'login', 'credential', 'signin', 'sign in',
'verify account', 'confirm identity', 'update payment', 'billing information',
'security alert', 'unusual activity', 'locked account', 'reset password']
def simple_language_detection(text):
"""Simple language detection based on character patterns"""
# Count character types
text_lower = text.lower()
# Common patterns for different languages
patterns = {
'English': re.findall(r'\b(?:the|and|for|are|but|not|you|all|have|her|was|one|our|out|if|will|can|what|when|your|said|there|each|which|their|time|with|about|many|then|them|these|some|would|make|like|him|into|has|look|more|write|see|other|after|than|call|first|may|way|who|its|now|people|been|had|how|did|get|made|find|where|much|too|very|still|being|going)\b', text_lower),
'Spanish': re.findall(r'\b(?:el|la|de|que|y|en|un|por|con|para|es|los|se|las|del|al|más|pero|su|le|ya|este|todo|esta|son|cuando|muy|sin|sobre|también|hay|donde|quien|desde|todos|parte|tiene|esto|ese|cada|hasta|vida|otros|aunque|esa|eso|hace|otra|gobierno|tan|durante|siempre|día|tanto|ella|tres|sí|dijo|sido|gran|país|según|menos|mundo|año|antes|estado|está|hombre|estar|caso|nada|hacer|años|tiempo|hoy|mayor|ahora|momento|mucho|después|entre|gente|sistema|ser|ciudad|manera|forma|dar|donde)\b', text_lower),
'French': re.findall(r'\b(?:le|de|un|être|et|à|il|avoir|ne|je|son|que|se|qui|ce|dans|elle|au|pour|pas|sur|on|avec|tout|plus|leur|était|par|sans|tu|ou|bien|dit|elle|si|comme|mais|peut|nous|aussi|autre|dont|où|encore|maintenant|deux|même|déjà|avant|ici|peu|alors|sous|homme|notre|très|même|quand|notre|sans|pourquoi|tout|après|jamais|aussi|toujours|puis|jamais|rien|cela|jour)\b', text_lower),
'German': re.findall(r'\b(?:der|die|und|in|den|von|zu|das|mit|sich|des|auf|für|ist|im|dem|nicht|ein|eine|als|auch|es|an|werden|aus|er|hat|dass|sie|nach|wird|bei|einer|um|am|sind|noch|wie|einem|über|einen|das|so|zum|war|haben|nur|oder|aber|vor|zur|bis|mehr|durch|man|sein|wenn|sehr|ihr|seine|mark|gegen|vom|ganz|können|schon|wenn|habe|seine|euro|ihre|dann|unter|wir|soll|ich|eines|kann|gut)\b', text_lower),
'Portuguese': re.findall(r'\b(?:o|de|a|e|do|que|em|ser|da|para|com|um|por|os|no|se|na|uma|dos|mais|ao|como|mas|foi|das|tem|seu|sua|ou|quando|muito|já|eu|também|pelo|pela|até|isso|ela|entre|depois|sem|mesmo|aos|seus|quem|nas|esse|eles|essa|num|nem|suas|meu|às|minha|numa|pelos|elas|havia|seja|qual|será|nós|tenho|lhe|deles|essas|esses|pelas|este|dele|tu|te|você|vocês|lhes|meus|minhas)\b', text_lower),
}
# Count matches for each language
scores = {}
for lang, matches in patterns.items():
scores[lang] = len(matches)
# If no patterns match, check for non-ASCII characters
if max(scores.values()) == 0:
# Check for specific character sets
if re.search(r'[\u4e00-\u9fff]', text): # Chinese characters
return 'Chinese'
elif re.search(r'[\u3040-\u309f\u30a0-\u30ff]', text): # Japanese characters
return 'Japanese'
elif re.search(r'[\uac00-\ud7af]', text): # Korean characters
return 'Korean'
elif re.search(r'[\u0600-\u06ff]', text): # Arabic characters
return 'Arabic'
elif re.search(r'[\u0400-\u04ff]', text): # Cyrillic (Russian)
return 'Russian'
elif re.search(r'[\u0900-\u097f]', text): # Hindi characters
return 'Hindi'
else:
return 'Unknown'
# Return the language with highest score
detected_lang = max(scores, key=scores.get)
if scores[detected_lang] < 3: # If very few matches, return Unknown
return 'Unknown'
return detected_lang
def detect_language_switching(text):
"""Simple detection of multiple languages in text"""
sentences = text.split('.')
languages = []
for sentence in sentences:
if len(sentence.strip()) > 10:
lang = simple_language_detection(sentence)
if lang != 'Unknown':
languages.append(lang)
unique_languages = list(set(languages))
if len(unique_languages) > 1:
return True, unique_languages
return False, unique_languages
def check_credential_phishing(message):
"""Check if email is asking for credentials or personal info"""
message_lower = message.lower()
found_credential_keywords = []
for keyword in CREDENTIAL_KEYWORDS:
if keyword in message_lower:
found_credential_keywords.append(keyword)
# Check for common phishing patterns
phishing_patterns = []
if re.search(r'(click|tap|press).*(link|here|button)', message_lower):
phishing_patterns.append("Suspicious call-to-action")
if re.search(r'(within|in).*(24|48|72).*(hour|hr)', message_lower):
phishing_patterns.append("Time pressure tactics")
if re.search(r'(suspend|lock|close|terminate).*(account|access)', message_lower):
phishing_patterns.append("Account threat")
if re.search(r'(confirm|verify|update).*(information|details|data)', message_lower):
phishing_patterns.append("Information request")
return found_credential_keywords, phishing_patterns
def extract_urls(message):
"""Extract all URLs from the message"""
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
urls = re.findall(url_pattern, message)
return urls
def analyze_email(message):
"""Detailed email analysis"""
analysis = {}
# Basic stats
analysis['word_count'] = len(message.split())
analysis['char_count'] = len(message)
# Language detection using simple method
analysis['language'] = simple_language_detection(message)
analysis['language_switching'], analysis['detected_languages'] = detect_language_switching(message)
# Extract URLs
analysis['urls'] = extract_urls(message)
analysis['has_urls'] = len(analysis['urls']) > 0
analysis['has_email'] = bool(re.search(r'\S+@\S+', message))
# Suspicious patterns
analysis['all_caps_words'] = len([w for w in message.split() if w.isupper() and len(w) > 2])
analysis['exclamation_marks'] = message.count('!')
# Spam keywords found
message_lower = message.lower()
found_keywords = [kw for kw in SPAM_KEYWORDS if kw in message_lower]
analysis['spam_keywords'] = found_keywords
# Credential phishing check
analysis['credential_keywords'], analysis['phishing_patterns'] = check_credential_phishing(message)
return analysis
def highlight_spam_words(message, keywords):
"""Highlight spam keywords in the message"""
highlighted = message
for kw in keywords:
pattern = re.compile(re.escape(kw), re.IGNORECASE)
highlighted = pattern.sub(f'<mark style="background-color: #ffcccc; padding: 2px 4px; border-radius: 3px;">{kw}</mark>', highlighted)
return highlighted
def generate_security_tips(analysis, is_spam):
"""Generate personalized security tips based on analysis"""
tips = []
if is_spam:
tips.append("⚠️ This email has been flagged as spam. Exercise caution.")
if analysis['credential_keywords']:
tips.append("🔐 Never share passwords or credentials via email.")
tips.append("🛡️ Legitimate companies won't ask for sensitive info via email.")
if analysis['has_urls']:
tips.append("🔗 Hover over links before clicking to verify destination.")
tips.append("🌐 Check if URL matches the official company website.")
if analysis['phishing_patterns']:
tips.append("⏰ Be suspicious of emails creating artificial urgency.")
tips.append("📞 Contact the company directly using official contact info.")
if analysis['language_switching']:
tips.append("🌍 Multiple languages detected - common tactic in international scams.")
if analysis['all_caps_words'] > 3:
tips.append("📢 Excessive capitalization is often used to create panic.")
if not tips:
tips.append("✅ Stay vigilant with all emails requesting action or information.")
return tips
def classify_email(message):
if not message.strip():
return "<div style='color:gray;'>Empty message</div>", "", "", "", "", ""
try:
# Get analysis
analysis = analyze_email(message)
# Classify
cleaned = preprocessor.preprocess(message)
vec = vectorizer.transform([cleaned])
pred = model.predict(vec)[0]
is_spam = pred == 1
result_type = "Spam" if is_spam else "Not Spam"
# Result card
if is_spam:
result_html = """
<div style='border:2px solid #ff4d4d; border-radius:10px; background-color:#ffe6e6;
padding:15px; font-size:18px; font-weight:bold; text-align:center;'>
🔴 Spam Detected
</div>
"""
else:
result_html = """
<div style='border:2px solid #4dff4d; border-radius:10px; background-color:#e6ffe6;
padding:15px; font-size:18px; font-weight:bold; text-align:center;'>
🟢 Legitimate Email
</div>
"""
# Language info
lang_warning = ""
if analysis['language_switching']:
langs = ', '.join(analysis['detected_languages'])
lang_warning = f"<tr style='background-color:#fff3cd;'><td style='padding:5px;'><b>⚠️ Language Switching:</b></td><td>Yes ({langs})</td></tr>"
# Analysis details
details_html = f"""
<div style='background-color:#f8f9fa; padding:15px; border-radius:8px; margin-top:10px;'>
<h3 style='margin-top:0; color:#333;'>📊 Email Analysis</h3>
<table style='width:100%; border-collapse: collapse;'>
<tr><td style='padding:5px;'><b>Detected Language:</b></td><td>{analysis['language']}</td></tr>
{lang_warning}
<tr><td style='padding:5px;'><b>Word Count:</b></td><td>{analysis['word_count']}</td></tr>
<tr><td style='padding:5px;'><b>Character Count:</b></td><td>{analysis['char_count']}</td></tr>
<tr><td style='padding:5px;'><b>Contains URLs:</b></td><td>{'⚠️ Yes (' + str(len(analysis['urls'])) + ')' if analysis['has_urls'] else '✓ No'}</td></tr>
<tr><td style='padding:5px;'><b>Contains Emails:</b></td><td>{'Yes' if analysis['has_email'] else 'No'}</td></tr>
<tr><td style='padding:5px;'><b>ALL CAPS Words:</b></td><td>{analysis['all_caps_words']}</td></tr>
<tr><td style='padding:5px;'><b>Exclamation Marks:</b></td><td>{analysis['exclamation_marks']}</td></tr>
</table>
</div>
"""
# Credential phishing warning
if analysis['credential_keywords'] or analysis['phishing_patterns']:
credential_html = f"""
<div style='background-color:#ffebee; padding:15px; border-radius:8px; margin-top:10px; border-left:4px solid #d32f2f;'>
<h3 style='margin-top:0; color:#d32f2f;'>🔐 Credential Phishing Alert!</h3>
{f"<p style='margin:5px 0;'><b>Suspicious Keywords:</b> {', '.join(analysis['credential_keywords'])}</p>" if analysis['credential_keywords'] else ""}
{f"<p style='margin:5px 0;'><b>Phishing Patterns:</b> {', '.join(analysis['phishing_patterns'])}</p>" if analysis['phishing_patterns'] else ""}
<p style='margin:10px 0 0 0; padding:10px; background-color:#fff; border-radius:5px;'>
<b>⚠️ Warning:</b> This email appears to be attempting to steal your credentials or personal information.
</p>
</div>
"""
else:
credential_html = ""
# URLs detected
if analysis['urls']:
urls_html = f"""
<div style='background-color:#fff3cd; padding:15px; border-radius:8px; margin-top:10px; border-left:4px solid #ff9800;'>
<h3 style='margin-top:0; color:#333;'>🔗 URLs Detected</h3>
<div style='background-color:white; padding:10px; border-radius:5px; font-size:14px;'>
{'<br>'.join(['<a href="' + url + '" target="_blank" style="color:#d32f2f; word-break:break-all;">' + url + '</a>' for url in analysis['urls']])}
</div>
<p style='margin:10px 0 0 0; font-size:13px; color:#666;'>
💡 Tip: Always verify URLs before clicking. Hover to see the actual destination.
</p>
</div>
"""
else:
urls_html = ""
# Highlighted message with spam keywords
if analysis['spam_keywords']:
keywords_html = f"""
<div style='background-color:#ffebee; padding:15px; border-radius:8px; margin-top:10px; border-left:4px solid #f44336;'>
<h3 style='margin-top:0; color:#333;'>⚠️ Suspicious Keywords Found</h3>
<p style='margin:5px 0;'><b>Keywords:</b> {', '.join(analysis['spam_keywords'])}</p>
<div style='background-color:white; padding:10px; border-radius:5px; margin-top:10px; font-size:14px; line-height:1.6;'>
{highlight_spam_words(message, analysis['spam_keywords'])}
</div>
</div>
"""
else:
keywords_html = ""
# Security tips
tips = generate_security_tips(analysis, is_spam)
tips_html = f"""
<div style='background-color:#e8f5e9; padding:15px; border-radius:8px; margin-top:10px; border-left:4px solid #4caf50;'>
<h3 style='margin-top:0; color:#2e7d32;'>🛡️ Security Tips</h3>
<ul style='margin:5px 0; padding-left:20px;'>
{''.join(['<li style="margin:5px 0;">' + tip + '</li>' for tip in tips])}
</ul>
</div>
"""
return result_html, details_html, credential_html, urls_html, keywords_html, tips_html
except Exception as e:
print(f"Prediction error: {e}")
return "<div style='color:gray;'>Error during classification</div>", "", "", "", "", ""
def process_bulk_emails(file):
"""Process bulk emails from file"""
if file is None:
return "Please upload a file", None
try:
# Read file
if file.name.endswith('.csv'):
df = pd.read_csv(file.name)
elif file.name.endswith('.txt'):
with open(file.name, 'r', encoding='utf-8') as f:
emails = f.readlines()
df = pd.DataFrame({'email': emails})
else:
return "Unsupported file format. Use CSV or TXT", None
# Get email column
email_col = df.columns[0]
results = []
for idx, email in enumerate(df[email_col]):
if pd.isna(email) or not str(email).strip():
continue
cleaned = preprocessor.preprocess(str(email))
vec = vectorizer.transform([cleaned])
pred = model.predict(vec)[0]
# Additional analysis
analysis = analyze_email(str(email))
results.append({
'Email': str(email)[:100] + '...' if len(str(email)) > 100 else str(email),
'Classification': 'Spam' if pred == 1 else 'Not Spam',
'Language': analysis['language'],
'Has_URLs': 'Yes' if analysis['has_urls'] else 'No',
'Credential_Risk': 'High' if analysis['credential_keywords'] else 'Low'
})
results_df = pd.DataFrame(results)
# Save to CSV
output_path = "spam_classification_results.csv"
results_df.to_csv(output_path, index=False)
spam_count = len([r for r in results if r['Classification'] == 'Spam'])
credential_risks = len([r for r in results if r['Credential_Risk'] == 'High'])
summary = f"✅ Processed {len(results)} emails\n"
summary += f"🔴 Spam: {spam_count}\n"
summary += f"🟢 Not Spam: {len(results) - spam_count}\n"
summary += f"🔐 Credential Phishing Risk: {credential_risks}"
return summary, output_path
except Exception as e:
return f"Error processing file: {str(e)}", None
# Enhanced examples with more diverse scenarios
examples = [
["Congratulations! You've won a $1000 gift card. Click here to claim your prize now!"],
["Thank you for registering for the conference. Your ticket and schedule are attached below. Looking forward to seeing you there."],
["Hello team, the project report is attached. Please review before tomorrow's meeting."],
["Hey John, are we still on for lunch tomorrow? Let me know!"],
["Make your business unforgettable with a new corporate identity. Order your custom logo design today — unlimited changes, fast delivery, and 100% satisfaction guaranteed."],
]
# Custom CSS
css = """
body {background-color: #f0f2f5; font-family: 'Segoe UI', sans-serif;}
h1 {color:#4B0082; text-align:center; margin-bottom:20px;}
.gr-button-primary {background-color:#4B0082; color:white; font-weight:bold;}
.gr-label {font-weight:bold;}
.gr-textbox textarea {font-size:14px;}
mark {animation: highlight 0.5s ease;}
@keyframes highlight {from {background-color: transparent;} to {background-color: #ffcccc;}}
"""
# Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Soft(), title=" Email Spam Classifier") as demo:
gr.Markdown("# 📧 Email Spam Classifier")
with gr.Tabs():
# Single Email Tab
with gr.Tab("🔍 Single Email Check"):
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
lines=8,
placeholder="Paste your email here...",
label="📝 Email Message"
)
with gr.Row():
submit_btn = gr.Button("🔍 Check Email", variant="primary")
clear_btn = gr.ClearButton([input_text], value="🗑️ Clear")
with gr.Column(scale=1):
output_label = gr.HTML(label="📊 Result")
analysis_output = gr.HTML(label="📋 Analysis Details")
credential_output = gr.HTML(label="🔐 Credential Phishing Check")
urls_output = gr.HTML(label="🔗 URLs Found")
keywords_output = gr.HTML(label="🔎 Keyword Highlights")
tips_output = gr.HTML(label="🛡️ Security Tips")
gr.Examples(
examples=examples,
inputs=input_text,
outputs=[output_label, analysis_output, credential_output, urls_output, keywords_output, tips_output],
fn=classify_email
)
submit_btn.click(
fn=classify_email,
inputs=input_text,
outputs=[output_label, analysis_output, credential_output, urls_output, keywords_output, tips_output]
)
input_text.submit(
fn=classify_email,
inputs=input_text,
outputs=[output_label, analysis_output, credential_output, urls_output, keywords_output, tips_output]
)
# Bulk Processing Tab
with gr.Tab("📦 Bulk Processing"):
gr.Markdown("### Upload a CSV or TXT file with emails (one per line)")
gr.Markdown("*Results will include spam classification, language detection, and credential phishing risk*")
with gr.Row():
with gr.Column():
file_input = gr.File(label="📁 Upload File", file_types=[".csv", ".txt"])
bulk_btn = gr.Button("🚀 Process Bulk Emails", variant="primary")
with gr.Column():
bulk_output = gr.Textbox(label="📊 Processing Summary", lines=6)
download_output = gr.File(label="⬇️ Download Results")
bulk_btn.click(
fn=process_bulk_emails,
inputs=file_input,
outputs=[bulk_output, download_output]
)
if __name__ == "__main__":
demo.launch() |