File size: 22,975 Bytes
772ea56
f177834
772ea56
 
f177834
 
 
e10bc93
 
 
772ea56
f177834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10bc93
 
921fc4a
 
 
 
 
 
 
 
bbca222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921fc4a
 
bbca222
 
 
 
 
 
 
 
 
 
 
 
 
 
921fc4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10bc93
4d007d4
 
 
 
 
 
e10bc93
 
 
 
 
 
 
4d007d4
bbca222
 
921fc4a
 
4d007d4
 
 
e10bc93
 
 
 
 
 
 
 
 
 
 
921fc4a
 
 
e10bc93
 
 
 
 
 
 
 
 
 
921fc4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbca222
921fc4a
 
 
 
 
 
 
 
 
f177834
 
bbca222
e10bc93
f177834
e10bc93
 
 
 
f177834
 
 
e10bc93
921fc4a
 
4ee33c1
e10bc93
921fc4a
e10bc93
4ee33c1
 
e10bc93
4ee33c1
 
f177834
e10bc93
4ee33c1
 
e10bc93
 
 
 
921fc4a
 
 
bbca222
921fc4a
 
e10bc93
 
 
 
 
921fc4a
 
e10bc93
 
4d007d4
e10bc93
 
 
 
 
 
 
921fc4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d007d4
 
 
 
 
 
 
 
921fc4a
 
 
4d007d4
 
 
 
 
e10bc93
 
 
4d007d4
e10bc93
 
 
 
 
4ee33c1
 
e10bc93
 
 
921fc4a
 
 
 
 
 
 
 
 
 
 
 
e10bc93
f177834
 
921fc4a
f177834
e10bc93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921fc4a
 
 
e10bc93
 
921fc4a
 
 
 
e10bc93
 
 
 
 
 
 
 
921fc4a
 
 
e10bc93
921fc4a
 
 
e10bc93
 
 
 
 
 
921fc4a
f177834
921fc4a
585fa5d
921fc4a
 
b552d7c
f177834
 
4ee33c1
f177834
 
4ee33c1
f177834
 
 
e10bc93
 
f177834
 
 
bbca222
 
 
e10bc93
 
 
 
f177834
e10bc93
 
 
 
 
 
 
 
 
4ee33c1
e10bc93
 
 
 
921fc4a
4d007d4
e10bc93
921fc4a
e10bc93
 
 
 
921fc4a
e10bc93
 
4ee33c1
e10bc93
 
 
921fc4a
e10bc93
 
 
 
921fc4a
e10bc93
 
 
 
 
921fc4a
e10bc93
 
 
 
 
921fc4a
e10bc93
 
 
 
 
 
 
f177834
 
e10bc93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import gradio as gr
import joblib
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import re
import os
import pandas as pd
from collections import Counter
import io

# Download NLTK data
try:
    nltk.download('stopwords', quiet=True)
    nltk.download('wordnet', quiet=True)
    nltk.download('punkt', quiet=True)
    nltk.download('omw-1.4', quiet=True)
except:
    pass

# Preprocessor with multi-language support
class AdvancedTextPreprocessor:
    def __init__(self, use_lemmatization=True, languages=['english']):
        self.use_lemmatization = use_lemmatization
        self.stop_words = set()
        for lang in languages:
            try:
                self.stop_words.update(set(stopwords.words(lang)))
            except:
                pass
        self.lemmatizer = WordNetLemmatizer()
    
    def clean_text(self, text):
        text = str(text).lower()
        text = re.sub(r'http\S+|www\S+|https\S+', '', text)
        text = re.sub(r'\S+@\S+', '', text)
        text = re.sub(r'\d+', '', text)
        text = re.sub(r'[^a-zA-Z\s]', '', text)
        return ' '.join(text.split())
    
    def remove_stopwords(self, text):
        words = text.split()
        filtered = [w for w in words if w not in self.stop_words]
        return ' '.join(filtered)
    
    def lemmatize_text(self, text):
        try:
            return ' '.join([self.lemmatizer.lemmatize(w) for w in text.split()])
        except:
            return text
    
    def preprocess(self, text):
        text = self.clean_text(text)
        text = self.remove_stopwords(text)
        if self.use_lemmatization:
            text = self.lemmatize_text(text)
        return text

preprocessor = AdvancedTextPreprocessor(languages=['english'])

# Load model and vectorizer
model_path = "spam_classifier.joblib"
vectorizer_path = "tfidf_vectorizer.joblib"
model = joblib.load(model_path)
vectorizer = joblib.load(vectorizer_path)

# Spam indicators
SPAM_KEYWORDS = ['win', 'winner', 'congratulations', 'free', 'urgent', 'click', 'verify', 
                 'account', 'suspended', 'prize', 'lottery', 'cash', 'credit', 'loan', 
                 'limited time', 'act now', 'expire', 'claim', 'bonus']

# Credential phishing keywords
CREDENTIAL_KEYWORDS = ['password', 'username', 'login', 'credential', 'signin', 'sign in',
                       'verify account', 'confirm identity', 'update payment', 'billing information',
                       'security alert', 'unusual activity', 'locked account', 'reset password']

def simple_language_detection(text):
    """Simple language detection based on character patterns"""
    # Count character types
    text_lower = text.lower()
    
    # Common patterns for different languages
    patterns = {
        'English': re.findall(r'\b(?:the|and|for|are|but|not|you|all|have|her|was|one|our|out|if|will|can|what|when|your|said|there|each|which|their|time|with|about|many|then|them|these|some|would|make|like|him|into|has|look|more|write|see|other|after|than|call|first|may|way|who|its|now|people|been|had|how|did|get|made|find|where|much|too|very|still|being|going)\b', text_lower),
        'Spanish': re.findall(r'\b(?:el|la|de|que|y|en|un|por|con|para|es|los|se|las|del|al|más|pero|su|le|ya|este|todo|esta|son|cuando|muy|sin|sobre|también|hay|donde|quien|desde|todos|parte|tiene|esto|ese|cada|hasta|vida|otros|aunque|esa|eso|hace|otra|gobierno|tan|durante|siempre|día|tanto|ella|tres|sí|dijo|sido|gran|país|según|menos|mundo|año|antes|estado|está|hombre|estar|caso|nada|hacer|años|tiempo|hoy|mayor|ahora|momento|mucho|después|entre|gente|sistema|ser|ciudad|manera|forma|dar|donde)\b', text_lower),
        'French': re.findall(r'\b(?:le|de|un|être|et|à|il|avoir|ne|je|son|que|se|qui|ce|dans|elle|au|pour|pas|sur|on|avec|tout|plus|leur|était|par|sans|tu|ou|bien|dit|elle|si|comme|mais|peut|nous|aussi|autre|dont|où|encore|maintenant|deux|même|déjà|avant|ici|peu|alors|sous|homme|notre|très|même|quand|notre|sans|pourquoi|tout|après|jamais|aussi|toujours|puis|jamais|rien|cela|jour)\b', text_lower),
        'German': re.findall(r'\b(?:der|die|und|in|den|von|zu|das|mit|sich|des|auf|für|ist|im|dem|nicht|ein|eine|als|auch|es|an|werden|aus|er|hat|dass|sie|nach|wird|bei|einer|um|am|sind|noch|wie|einem|über|einen|das|so|zum|war|haben|nur|oder|aber|vor|zur|bis|mehr|durch|man|sein|wenn|sehr|ihr|seine|mark|gegen|vom|ganz|können|schon|wenn|habe|seine|euro|ihre|dann|unter|wir|soll|ich|eines|kann|gut)\b', text_lower),
        'Portuguese': re.findall(r'\b(?:o|de|a|e|do|que|em|ser|da|para|com|um|por|os|no|se|na|uma|dos|mais|ao|como|mas|foi|das|tem|seu|sua|ou|quando|muito|já|eu|também|pelo|pela|até|isso|ela|entre|depois|sem|mesmo|aos|seus|quem|nas|esse|eles|essa|num|nem|suas|meu|às|minha|numa|pelos|elas|havia|seja|qual|será|nós|tenho|lhe|deles|essas|esses|pelas|este|dele|tu|te|você|vocês|lhes|meus|minhas)\b', text_lower),
    }
    
    # Count matches for each language
    scores = {}
    for lang, matches in patterns.items():
        scores[lang] = len(matches)
    
    # If no patterns match, check for non-ASCII characters
    if max(scores.values()) == 0:
        # Check for specific character sets
        if re.search(r'[\u4e00-\u9fff]', text):  # Chinese characters
            return 'Chinese'
        elif re.search(r'[\u3040-\u309f\u30a0-\u30ff]', text):  # Japanese characters
            return 'Japanese'
        elif re.search(r'[\uac00-\ud7af]', text):  # Korean characters
            return 'Korean'
        elif re.search(r'[\u0600-\u06ff]', text):  # Arabic characters
            return 'Arabic'
        elif re.search(r'[\u0400-\u04ff]', text):  # Cyrillic (Russian)
            return 'Russian'
        elif re.search(r'[\u0900-\u097f]', text):  # Hindi characters
            return 'Hindi'
        else:
            return 'Unknown'
    
    # Return the language with highest score
    detected_lang = max(scores, key=scores.get)
    if scores[detected_lang] < 3:  # If very few matches, return Unknown
        return 'Unknown'
    return detected_lang

def detect_language_switching(text):
    """Simple detection of multiple languages in text"""
    sentences = text.split('.')
    languages = []
    
    for sentence in sentences:
        if len(sentence.strip()) > 10:
            lang = simple_language_detection(sentence)
            if lang != 'Unknown':
                languages.append(lang)
    
    unique_languages = list(set(languages))
    if len(unique_languages) > 1:
        return True, unique_languages
    return False, unique_languages

def check_credential_phishing(message):
    """Check if email is asking for credentials or personal info"""
    message_lower = message.lower()
    found_credential_keywords = []
    
    for keyword in CREDENTIAL_KEYWORDS:
        if keyword in message_lower:
            found_credential_keywords.append(keyword)
    
    # Check for common phishing patterns
    phishing_patterns = []
    
    if re.search(r'(click|tap|press).*(link|here|button)', message_lower):
        phishing_patterns.append("Suspicious call-to-action")
    
    if re.search(r'(within|in).*(24|48|72).*(hour|hr)', message_lower):
        phishing_patterns.append("Time pressure tactics")
    
    if re.search(r'(suspend|lock|close|terminate).*(account|access)', message_lower):
        phishing_patterns.append("Account threat")
    
    if re.search(r'(confirm|verify|update).*(information|details|data)', message_lower):
        phishing_patterns.append("Information request")
    
    return found_credential_keywords, phishing_patterns

def extract_urls(message):
    """Extract all URLs from the message"""
    url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
    urls = re.findall(url_pattern, message)
    return urls

def analyze_email(message):
    """Detailed email analysis"""
    analysis = {}
    
    # Basic stats
    analysis['word_count'] = len(message.split())
    analysis['char_count'] = len(message)
    
    # Language detection using simple method
    analysis['language'] = simple_language_detection(message)
    analysis['language_switching'], analysis['detected_languages'] = detect_language_switching(message)
    
    # Extract URLs
    analysis['urls'] = extract_urls(message)
    analysis['has_urls'] = len(analysis['urls']) > 0
    analysis['has_email'] = bool(re.search(r'\S+@\S+', message))
    
    # Suspicious patterns
    analysis['all_caps_words'] = len([w for w in message.split() if w.isupper() and len(w) > 2])
    analysis['exclamation_marks'] = message.count('!')
    
    # Spam keywords found
    message_lower = message.lower()
    found_keywords = [kw for kw in SPAM_KEYWORDS if kw in message_lower]
    analysis['spam_keywords'] = found_keywords
    
    # Credential phishing check
    analysis['credential_keywords'], analysis['phishing_patterns'] = check_credential_phishing(message)
    
    return analysis

def highlight_spam_words(message, keywords):
    """Highlight spam keywords in the message"""
    highlighted = message
    for kw in keywords:
        pattern = re.compile(re.escape(kw), re.IGNORECASE)
        highlighted = pattern.sub(f'<mark style="background-color: #ffcccc; padding: 2px 4px; border-radius: 3px;">{kw}</mark>', highlighted)
    return highlighted

def generate_security_tips(analysis, is_spam):
    """Generate personalized security tips based on analysis"""
    tips = []
    
    if is_spam:
        tips.append("⚠️ This email has been flagged as spam. Exercise caution.")
    
    if analysis['credential_keywords']:
        tips.append("🔐 Never share passwords or credentials via email.")
        tips.append("🛡️ Legitimate companies won't ask for sensitive info via email.")
    
    if analysis['has_urls']:
        tips.append("🔗 Hover over links before clicking to verify destination.")
        tips.append("🌐 Check if URL matches the official company website.")
    
    if analysis['phishing_patterns']:
        tips.append("⏰ Be suspicious of emails creating artificial urgency.")
        tips.append("📞 Contact the company directly using official contact info.")
    
    if analysis['language_switching']:
        tips.append("🌍 Multiple languages detected - common tactic in international scams.")
    
    if analysis['all_caps_words'] > 3:
        tips.append("📢 Excessive capitalization is often used to create panic.")
    
    if not tips:
        tips.append("✅ Stay vigilant with all emails requesting action or information.")
    
    return tips

def classify_email(message):
    if not message.strip():
        return "<div style='color:gray;'>Empty message</div>", "", "", "", "", ""
    
    try:
        # Get analysis
        analysis = analyze_email(message)
        
        # Classify
        cleaned = preprocessor.preprocess(message)
        vec = vectorizer.transform([cleaned])
        pred = model.predict(vec)[0]
        
        is_spam = pred == 1
        result_type = "Spam" if is_spam else "Not Spam"

        # Result card
        if is_spam:
            result_html = """
            <div style='border:2px solid #ff4d4d; border-radius:10px; background-color:#ffe6e6;
                        padding:15px; font-size:18px; font-weight:bold; text-align:center;'>
                🔴 Spam Detected
            </div>
            """
        else:
            result_html = """
            <div style='border:2px solid #4dff4d; border-radius:10px; background-color:#e6ffe6;
                        padding:15px; font-size:18px; font-weight:bold; text-align:center;'>
                🟢 Legitimate Email
            </div>
            """
        
        # Language info
        lang_warning = ""
        if analysis['language_switching']:
            langs = ', '.join(analysis['detected_languages'])
            lang_warning = f"<tr style='background-color:#fff3cd;'><td style='padding:5px;'><b>⚠️ Language Switching:</b></td><td>Yes ({langs})</td></tr>"
        
        # Analysis details
        details_html = f"""
        <div style='background-color:#f8f9fa; padding:15px; border-radius:8px; margin-top:10px;'>
            <h3 style='margin-top:0; color:#333;'>📊 Email Analysis</h3>
            <table style='width:100%; border-collapse: collapse;'>
                <tr><td style='padding:5px;'><b>Detected Language:</b></td><td>{analysis['language']}</td></tr>
                {lang_warning}
                <tr><td style='padding:5px;'><b>Word Count:</b></td><td>{analysis['word_count']}</td></tr>
                <tr><td style='padding:5px;'><b>Character Count:</b></td><td>{analysis['char_count']}</td></tr>
                <tr><td style='padding:5px;'><b>Contains URLs:</b></td><td>{'⚠️ Yes (' + str(len(analysis['urls'])) + ')' if analysis['has_urls'] else '✓ No'}</td></tr>
                <tr><td style='padding:5px;'><b>Contains Emails:</b></td><td>{'Yes' if analysis['has_email'] else 'No'}</td></tr>
                <tr><td style='padding:5px;'><b>ALL CAPS Words:</b></td><td>{analysis['all_caps_words']}</td></tr>
                <tr><td style='padding:5px;'><b>Exclamation Marks:</b></td><td>{analysis['exclamation_marks']}</td></tr>
            </table>
        </div>
        """
        
        # Credential phishing warning
        if analysis['credential_keywords'] or analysis['phishing_patterns']:
            credential_html = f"""
            <div style='background-color:#ffebee; padding:15px; border-radius:8px; margin-top:10px; border-left:4px solid #d32f2f;'>
                <h3 style='margin-top:0; color:#d32f2f;'>🔐 Credential Phishing Alert!</h3>
                {f"<p style='margin:5px 0;'><b>Suspicious Keywords:</b> {', '.join(analysis['credential_keywords'])}</p>" if analysis['credential_keywords'] else ""}
                {f"<p style='margin:5px 0;'><b>Phishing Patterns:</b> {', '.join(analysis['phishing_patterns'])}</p>" if analysis['phishing_patterns'] else ""}
                <p style='margin:10px 0 0 0; padding:10px; background-color:#fff; border-radius:5px;'>
                    <b>⚠️ Warning:</b> This email appears to be attempting to steal your credentials or personal information.
                </p>
            </div>
            """
        else:
            credential_html = ""
        
        # URLs detected
        if analysis['urls']:
            urls_html = f"""
            <div style='background-color:#fff3cd; padding:15px; border-radius:8px; margin-top:10px; border-left:4px solid #ff9800;'>
                <h3 style='margin-top:0; color:#333;'>🔗 URLs Detected</h3>
                <div style='background-color:white; padding:10px; border-radius:5px; font-size:14px;'>
                    {'<br>'.join(['<a href="' + url + '" target="_blank" style="color:#d32f2f; word-break:break-all;">' + url + '</a>' for url in analysis['urls']])}
                </div>
                <p style='margin:10px 0 0 0; font-size:13px; color:#666;'>
                    💡 Tip: Always verify URLs before clicking. Hover to see the actual destination.
                </p>
            </div>
            """
        else:
            urls_html = ""
        
        # Highlighted message with spam keywords
        if analysis['spam_keywords']:
            keywords_html = f"""
            <div style='background-color:#ffebee; padding:15px; border-radius:8px; margin-top:10px; border-left:4px solid #f44336;'>
                <h3 style='margin-top:0; color:#333;'>⚠️ Suspicious Keywords Found</h3>
                <p style='margin:5px 0;'><b>Keywords:</b> {', '.join(analysis['spam_keywords'])}</p>
                <div style='background-color:white; padding:10px; border-radius:5px; margin-top:10px; font-size:14px; line-height:1.6;'>
                    {highlight_spam_words(message, analysis['spam_keywords'])}
                </div>
            </div>
            """
        else:
            keywords_html = ""
        
        # Security tips
        tips = generate_security_tips(analysis, is_spam)
        tips_html = f"""
        <div style='background-color:#e8f5e9; padding:15px; border-radius:8px; margin-top:10px; border-left:4px solid #4caf50;'>
            <h3 style='margin-top:0; color:#2e7d32;'>🛡️ Security Tips</h3>
            <ul style='margin:5px 0; padding-left:20px;'>
                {''.join(['<li style="margin:5px 0;">' + tip + '</li>' for tip in tips])}
            </ul>
        </div>
        """
        
        return result_html, details_html, credential_html, urls_html, keywords_html, tips_html
        
    except Exception as e:
        print(f"Prediction error: {e}")
        return "<div style='color:gray;'>Error during classification</div>", "", "", "", "", ""

def process_bulk_emails(file):
    """Process bulk emails from file"""
    if file is None:
        return "Please upload a file", None
    
    try:
        # Read file
        if file.name.endswith('.csv'):
            df = pd.read_csv(file.name)
        elif file.name.endswith('.txt'):
            with open(file.name, 'r', encoding='utf-8') as f:
                emails = f.readlines()
            df = pd.DataFrame({'email': emails})
        else:
            return "Unsupported file format. Use CSV or TXT", None
        
        # Get email column
        email_col = df.columns[0]
        results = []
        
        for idx, email in enumerate(df[email_col]):
            if pd.isna(email) or not str(email).strip():
                continue
            
            cleaned = preprocessor.preprocess(str(email))
            vec = vectorizer.transform([cleaned])
            pred = model.predict(vec)[0]
            
            # Additional analysis
            analysis = analyze_email(str(email))
            
            results.append({
                'Email': str(email)[:100] + '...' if len(str(email)) > 100 else str(email),
                'Classification': 'Spam' if pred == 1 else 'Not Spam',
                'Language': analysis['language'],
                'Has_URLs': 'Yes' if analysis['has_urls'] else 'No',
                'Credential_Risk': 'High' if analysis['credential_keywords'] else 'Low'
            })
        
        results_df = pd.DataFrame(results)
        
        # Save to CSV
        output_path = "spam_classification_results.csv"
        results_df.to_csv(output_path, index=False)
        
        spam_count = len([r for r in results if r['Classification'] == 'Spam'])
        credential_risks = len([r for r in results if r['Credential_Risk'] == 'High'])
        
        summary = f"✅ Processed {len(results)} emails\n"
        summary += f"🔴 Spam: {spam_count}\n"
        summary += f"🟢 Not Spam: {len(results) - spam_count}\n"
        summary += f"🔐 Credential Phishing Risk: {credential_risks}"
        
        return summary, output_path
        
    except Exception as e:
        return f"Error processing file: {str(e)}", None

# Enhanced examples with more diverse scenarios
examples = [
    ["Congratulations! You've won a $1000 gift card. Click here to claim your prize now!"],
    ["Thank you for registering for the conference. Your ticket and schedule are attached below. Looking forward to seeing you there."],
    ["Hello team, the project report is attached. Please review before tomorrow's meeting."],
    ["Hey John, are we still on for lunch tomorrow? Let me know!"],
    ["Make your business unforgettable with a new corporate identity. Order your custom logo design today — unlimited changes, fast delivery, and 100% satisfaction guaranteed."],
]

# Custom CSS
css = """
body {background-color: #f0f2f5; font-family: 'Segoe UI', sans-serif;}
h1 {color:#4B0082; text-align:center; margin-bottom:20px;}
.gr-button-primary {background-color:#4B0082; color:white; font-weight:bold;}
.gr-label {font-weight:bold;}
.gr-textbox textarea {font-size:14px;}
mark {animation: highlight 0.5s ease;}
@keyframes highlight {from {background-color: transparent;} to {background-color: #ffcccc;}}
"""

# Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Soft(), title=" Email Spam Classifier") as demo:
    gr.Markdown("# 📧 Email Spam Classifier")
 
    
    with gr.Tabs():
        # Single Email Tab
        with gr.Tab("🔍 Single Email Check"):
            with gr.Row():
                with gr.Column(scale=2):
                    input_text = gr.Textbox(
                        lines=8,
                        placeholder="Paste your email here...",
                        label="📝 Email Message"
                    )
                    with gr.Row():
                        submit_btn = gr.Button("🔍 Check Email", variant="primary")
                        clear_btn = gr.ClearButton([input_text], value="🗑️ Clear")

                with gr.Column(scale=1):
                    output_label = gr.HTML(label="📊 Result")
            
            analysis_output = gr.HTML(label="📋 Analysis Details")
            credential_output = gr.HTML(label="🔐 Credential Phishing Check")
            urls_output = gr.HTML(label="🔗 URLs Found")
            keywords_output = gr.HTML(label="🔎 Keyword Highlights")
            tips_output = gr.HTML(label="🛡️ Security Tips")
            
            gr.Examples(
                examples=examples,
                inputs=input_text,
                outputs=[output_label, analysis_output, credential_output, urls_output, keywords_output, tips_output],
                fn=classify_email
            )

            submit_btn.click(
                fn=classify_email, 
                inputs=input_text, 
                outputs=[output_label, analysis_output, credential_output, urls_output, keywords_output, tips_output]
            )
            input_text.submit(
                fn=classify_email, 
                inputs=input_text, 
                outputs=[output_label, analysis_output, credential_output, urls_output, keywords_output, tips_output]
            )
        
        # Bulk Processing Tab
        with gr.Tab("📦 Bulk Processing"):
            gr.Markdown("### Upload a CSV or TXT file with emails (one per line)")
            gr.Markdown("*Results will include spam classification, language detection, and credential phishing risk*")
            with gr.Row():
                with gr.Column():
                    file_input = gr.File(label="📁 Upload File", file_types=[".csv", ".txt"])
                    bulk_btn = gr.Button("🚀 Process Bulk Emails", variant="primary")
                with gr.Column():
                    bulk_output = gr.Textbox(label="📊 Processing Summary", lines=6)
                    download_output = gr.File(label="⬇️ Download Results")
            
            bulk_btn.click(
                fn=process_bulk_emails,
                inputs=file_input,
                outputs=[bulk_output, download_output]
            )

if __name__ == "__main__":
    demo.launch()