#In-built libraries import json import tempfile import traceback from typing import Dict #third-party libraries import gradio as gr from PIL import Image from qwen_vl_utils import process_vision_info from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor def save_temp_image(image: Image.Image) -> str: """ Saves the given PIL Image object as a temporary PNG file. Args: image (Image.Image): The image to be saved. Returns: str: The file path of the saved temporary image. """ # Create a temp file WITHOUT extension with tempfile.NamedTemporaryFile(suffix=".tmp", delete=False) as tmp_file: # Save image as PNG regardless of original format image.save(tmp_file.name, format="PNG") return tmp_file.name def id_extractor(image: Image.Image) -> Dict: # default: Load the model on the available device(s) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto" ) # default processer processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": "Extract all the available key details from the image in JSON"}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) resp = output_text[-1].replace("```json", "").replace("```", "").strip() return json.loads(resp) # Define the Gradio interface for the ID extractor id_interface = gr.Interface( fn=id_extractor, inputs=gr.Image(type="pil", label="Upload an image"), outputs=gr.JSON(label="Extracted Details"), title="Upload your ID", description="Upload an image of a document. Key details will be extracted automatically." ) # Launch the Gradio interface id_interface.launch(mcp_server=True)