Spaces:
Running
on
Zero
Running
on
Zero
Upload 57 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- examples/i2v_input.JPG +3 -0
- generate.py +411 -0
- gradio_ti2v.py +154 -0
- requirements.txt +15 -0
- wan/__init__.py +5 -0
- wan/__pycache__/__init__.cpython-310.pyc +0 -0
- wan/__pycache__/image2video.cpython-310.pyc +0 -0
- wan/__pycache__/text2video.cpython-310.pyc +0 -0
- wan/__pycache__/textimage2video.cpython-310.pyc +0 -0
- wan/configs/__init__.py +39 -0
- wan/configs/__pycache__/__init__.cpython-310.pyc +0 -0
- wan/configs/__pycache__/shared_config.cpython-310.pyc +0 -0
- wan/configs/__pycache__/wan_i2v_A14B.cpython-310.pyc +0 -0
- wan/configs/__pycache__/wan_t2v_A14B.cpython-310.pyc +0 -0
- wan/configs/__pycache__/wan_ti2v_5B.cpython-310.pyc +0 -0
- wan/configs/shared_config.py +20 -0
- wan/configs/wan_i2v_A14B.py +37 -0
- wan/configs/wan_t2v_A14B.py +37 -0
- wan/configs/wan_ti2v_5B.py +36 -0
- wan/distributed/__init__.py +1 -0
- wan/distributed/__pycache__/__init__.cpython-310.pyc +0 -0
- wan/distributed/__pycache__/fsdp.cpython-310.pyc +0 -0
- wan/distributed/__pycache__/sequence_parallel.cpython-310.pyc +0 -0
- wan/distributed/__pycache__/ulysses.cpython-310.pyc +0 -0
- wan/distributed/__pycache__/util.cpython-310.pyc +0 -0
- wan/distributed/fsdp.py +43 -0
- wan/distributed/sequence_parallel.py +176 -0
- wan/distributed/ulysses.py +47 -0
- wan/distributed/util.py +51 -0
- wan/image2video.py +431 -0
- wan/modules/__init__.py +19 -0
- wan/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- wan/modules/__pycache__/attention.cpython-310.pyc +0 -0
- wan/modules/__pycache__/model.cpython-310.pyc +0 -0
- wan/modules/__pycache__/t5.cpython-310.pyc +0 -0
- wan/modules/__pycache__/tokenizers.cpython-310.pyc +0 -0
- wan/modules/__pycache__/vae2_1.cpython-310.pyc +0 -0
- wan/modules/__pycache__/vae2_2.cpython-310.pyc +0 -0
- wan/modules/attention.py +179 -0
- wan/modules/model.py +546 -0
- wan/modules/t5.py +513 -0
- wan/modules/tokenizers.py +82 -0
- wan/modules/vae2_1.py +663 -0
- wan/modules/vae2_2.py +1051 -0
- wan/text2video.py +378 -0
- wan/textimage2video.py +619 -0
- wan/utils/__init__.py +12 -0
- wan/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- wan/utils/__pycache__/fm_solvers.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/i2v_input.JPG filter=lfs diff=lfs merge=lfs -text
|
examples/i2v_input.JPG
ADDED
|
Git LFS Details
|
generate.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import argparse
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import warnings
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
+
|
11 |
+
import random
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.distributed as dist
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
import wan
|
18 |
+
from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
|
19 |
+
from wan.distributed.util import init_distributed_group
|
20 |
+
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
21 |
+
from wan.utils.utils import cache_video, str2bool
|
22 |
+
|
23 |
+
EXAMPLE_PROMPT = {
|
24 |
+
"t2v-A14B": {
|
25 |
+
"prompt":
|
26 |
+
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
27 |
+
},
|
28 |
+
"i2v-A14B": {
|
29 |
+
"prompt":
|
30 |
+
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
|
31 |
+
"image":
|
32 |
+
"examples/i2v_input.JPG",
|
33 |
+
},
|
34 |
+
"ti2v-5B": {
|
35 |
+
"prompt":
|
36 |
+
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
37 |
+
},
|
38 |
+
}
|
39 |
+
|
40 |
+
|
41 |
+
def _validate_args(args):
|
42 |
+
# Basic check
|
43 |
+
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
|
44 |
+
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
|
45 |
+
assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
|
46 |
+
|
47 |
+
if args.prompt is None:
|
48 |
+
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
49 |
+
if args.image is None and "image" in EXAMPLE_PROMPT[args.task]:
|
50 |
+
args.image = EXAMPLE_PROMPT[args.task]["image"]
|
51 |
+
|
52 |
+
if args.task == "i2v-A14B":
|
53 |
+
assert args.image is not None, "Please specify the image path for i2v."
|
54 |
+
|
55 |
+
cfg = WAN_CONFIGS[args.task]
|
56 |
+
|
57 |
+
if args.sample_steps is None:
|
58 |
+
args.sample_steps = cfg.sample_steps
|
59 |
+
|
60 |
+
if args.sample_shift is None:
|
61 |
+
args.sample_shift = cfg.sample_shift
|
62 |
+
|
63 |
+
if args.sample_guide_scale is None:
|
64 |
+
args.sample_guide_scale = cfg.sample_guide_scale
|
65 |
+
|
66 |
+
if args.frame_num is None:
|
67 |
+
args.frame_num = cfg.frame_num
|
68 |
+
|
69 |
+
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
|
70 |
+
0, sys.maxsize)
|
71 |
+
# Size check
|
72 |
+
assert args.size in SUPPORTED_SIZES[
|
73 |
+
args.
|
74 |
+
task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
|
75 |
+
|
76 |
+
|
77 |
+
def _parse_args():
|
78 |
+
parser = argparse.ArgumentParser(
|
79 |
+
description="Generate a image or video from a text prompt or image using Wan"
|
80 |
+
)
|
81 |
+
parser.add_argument(
|
82 |
+
"--task",
|
83 |
+
type=str,
|
84 |
+
default="t2v-A14B",
|
85 |
+
choices=list(WAN_CONFIGS.keys()),
|
86 |
+
help="The task to run.")
|
87 |
+
parser.add_argument(
|
88 |
+
"--size",
|
89 |
+
type=str,
|
90 |
+
default="1280*720",
|
91 |
+
choices=list(SIZE_CONFIGS.keys()),
|
92 |
+
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
|
93 |
+
)
|
94 |
+
parser.add_argument(
|
95 |
+
"--frame_num",
|
96 |
+
type=int,
|
97 |
+
default=None,
|
98 |
+
help="How many frames of video are generated. The number should be 4n+1"
|
99 |
+
)
|
100 |
+
parser.add_argument(
|
101 |
+
"--ckpt_dir",
|
102 |
+
type=str,
|
103 |
+
default=None,
|
104 |
+
help="The path to the checkpoint directory.")
|
105 |
+
parser.add_argument(
|
106 |
+
"--offload_model",
|
107 |
+
type=str2bool,
|
108 |
+
default=None,
|
109 |
+
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--ulysses_size",
|
113 |
+
type=int,
|
114 |
+
default=1,
|
115 |
+
help="The size of the ulysses parallelism in DiT.")
|
116 |
+
parser.add_argument(
|
117 |
+
"--t5_fsdp",
|
118 |
+
action="store_true",
|
119 |
+
default=False,
|
120 |
+
help="Whether to use FSDP for T5.")
|
121 |
+
parser.add_argument(
|
122 |
+
"--t5_cpu",
|
123 |
+
action="store_true",
|
124 |
+
default=False,
|
125 |
+
help="Whether to place T5 model on CPU.")
|
126 |
+
parser.add_argument(
|
127 |
+
"--dit_fsdp",
|
128 |
+
action="store_true",
|
129 |
+
default=False,
|
130 |
+
help="Whether to use FSDP for DiT.")
|
131 |
+
parser.add_argument(
|
132 |
+
"--save_file",
|
133 |
+
type=str,
|
134 |
+
default=None,
|
135 |
+
help="The file to save the generated video to.")
|
136 |
+
parser.add_argument(
|
137 |
+
"--prompt",
|
138 |
+
type=str,
|
139 |
+
default=None,
|
140 |
+
help="The prompt to generate the video from.")
|
141 |
+
parser.add_argument(
|
142 |
+
"--use_prompt_extend",
|
143 |
+
action="store_true",
|
144 |
+
default=False,
|
145 |
+
help="Whether to use prompt extend.")
|
146 |
+
parser.add_argument(
|
147 |
+
"--prompt_extend_method",
|
148 |
+
type=str,
|
149 |
+
default="local_qwen",
|
150 |
+
choices=["dashscope", "local_qwen"],
|
151 |
+
help="The prompt extend method to use.")
|
152 |
+
parser.add_argument(
|
153 |
+
"--prompt_extend_model",
|
154 |
+
type=str,
|
155 |
+
default=None,
|
156 |
+
help="The prompt extend model to use.")
|
157 |
+
parser.add_argument(
|
158 |
+
"--prompt_extend_target_lang",
|
159 |
+
type=str,
|
160 |
+
default="zh",
|
161 |
+
choices=["zh", "en"],
|
162 |
+
help="The target language of prompt extend.")
|
163 |
+
parser.add_argument(
|
164 |
+
"--base_seed",
|
165 |
+
type=int,
|
166 |
+
default=-1,
|
167 |
+
help="The seed to use for generating the video.")
|
168 |
+
parser.add_argument(
|
169 |
+
"--image",
|
170 |
+
type=str,
|
171 |
+
default=None,
|
172 |
+
help="The image to generate the video from.")
|
173 |
+
parser.add_argument(
|
174 |
+
"--sample_solver",
|
175 |
+
type=str,
|
176 |
+
default='unipc',
|
177 |
+
choices=['unipc', 'dpm++'],
|
178 |
+
help="The solver used to sample.")
|
179 |
+
parser.add_argument(
|
180 |
+
"--sample_steps", type=int, default=None, help="The sampling steps.")
|
181 |
+
parser.add_argument(
|
182 |
+
"--sample_shift",
|
183 |
+
type=float,
|
184 |
+
default=None,
|
185 |
+
help="Sampling shift factor for flow matching schedulers.")
|
186 |
+
parser.add_argument(
|
187 |
+
"--sample_guide_scale",
|
188 |
+
type=float,
|
189 |
+
default=None,
|
190 |
+
help="Classifier free guidance scale.")
|
191 |
+
parser.add_argument(
|
192 |
+
"--convert_model_dtype",
|
193 |
+
action="store_true",
|
194 |
+
default=False,
|
195 |
+
help="Whether to convert model paramerters dtype.")
|
196 |
+
|
197 |
+
args = parser.parse_args()
|
198 |
+
|
199 |
+
_validate_args(args)
|
200 |
+
|
201 |
+
return args
|
202 |
+
|
203 |
+
|
204 |
+
def _init_logging(rank):
|
205 |
+
# logging
|
206 |
+
if rank == 0:
|
207 |
+
# set format
|
208 |
+
logging.basicConfig(
|
209 |
+
level=logging.INFO,
|
210 |
+
format="[%(asctime)s] %(levelname)s: %(message)s",
|
211 |
+
handlers=[logging.StreamHandler(stream=sys.stdout)])
|
212 |
+
else:
|
213 |
+
logging.basicConfig(level=logging.ERROR)
|
214 |
+
|
215 |
+
|
216 |
+
def generate(args):
|
217 |
+
rank = int(os.getenv("RANK", 0))
|
218 |
+
world_size = int(os.getenv("WORLD_SIZE", 1))
|
219 |
+
local_rank = int(os.getenv("LOCAL_RANK", 0))
|
220 |
+
device = local_rank
|
221 |
+
_init_logging(rank)
|
222 |
+
|
223 |
+
if args.offload_model is None:
|
224 |
+
args.offload_model = False if world_size > 1 else True
|
225 |
+
logging.info(
|
226 |
+
f"offload_model is not specified, set to {args.offload_model}.")
|
227 |
+
if world_size > 1:
|
228 |
+
torch.cuda.set_device(local_rank)
|
229 |
+
dist.init_process_group(
|
230 |
+
backend="nccl",
|
231 |
+
init_method="env://",
|
232 |
+
rank=rank,
|
233 |
+
world_size=world_size)
|
234 |
+
else:
|
235 |
+
assert not (
|
236 |
+
args.t5_fsdp or args.dit_fsdp
|
237 |
+
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
|
238 |
+
assert not (
|
239 |
+
args.ulysses_size > 1
|
240 |
+
), f"sequence parallel are not supported in non-distributed environments."
|
241 |
+
|
242 |
+
if args.ulysses_size > 1:
|
243 |
+
assert args.ulysses_size == world_size, f"The number of ulysses_size should be equal to the world size."
|
244 |
+
init_distributed_group()
|
245 |
+
|
246 |
+
if args.use_prompt_extend:
|
247 |
+
if args.prompt_extend_method == "dashscope":
|
248 |
+
prompt_expander = DashScopePromptExpander(
|
249 |
+
model_name=args.prompt_extend_model,
|
250 |
+
task=args.task,
|
251 |
+
is_vl=args.image is not None)
|
252 |
+
elif args.prompt_extend_method == "local_qwen":
|
253 |
+
prompt_expander = QwenPromptExpander(
|
254 |
+
model_name=args.prompt_extend_model,
|
255 |
+
task=args.task,
|
256 |
+
is_vl=args.image is not None,
|
257 |
+
device=rank)
|
258 |
+
else:
|
259 |
+
raise NotImplementedError(
|
260 |
+
f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
|
261 |
+
|
262 |
+
cfg = WAN_CONFIGS[args.task]
|
263 |
+
if args.ulysses_size > 1:
|
264 |
+
assert cfg.num_heads % args.ulysses_size == 0, f"`{cfg.num_heads=}` cannot be divided evenly by `{args.ulysses_size=}`."
|
265 |
+
|
266 |
+
logging.info(f"Generation job args: {args}")
|
267 |
+
logging.info(f"Generation model config: {cfg}")
|
268 |
+
|
269 |
+
if dist.is_initialized():
|
270 |
+
base_seed = [args.base_seed] if rank == 0 else [None]
|
271 |
+
dist.broadcast_object_list(base_seed, src=0)
|
272 |
+
args.base_seed = base_seed[0]
|
273 |
+
|
274 |
+
logging.info(f"Input prompt: {args.prompt}")
|
275 |
+
img = None
|
276 |
+
if args.image is not None:
|
277 |
+
img = Image.open(args.image).convert("RGB")
|
278 |
+
logging.info(f"Input image: {args.image}")
|
279 |
+
|
280 |
+
# prompt extend
|
281 |
+
if args.use_prompt_extend:
|
282 |
+
logging.info("Extending prompt ...")
|
283 |
+
if rank == 0:
|
284 |
+
prompt_output = prompt_expander(
|
285 |
+
args.prompt,
|
286 |
+
image=img,
|
287 |
+
tar_lang=args.prompt_extend_target_lang,
|
288 |
+
seed=args.base_seed)
|
289 |
+
if prompt_output.status == False:
|
290 |
+
logging.info(
|
291 |
+
f"Extending prompt failed: {prompt_output.message}")
|
292 |
+
logging.info("Falling back to original prompt.")
|
293 |
+
input_prompt = args.prompt
|
294 |
+
else:
|
295 |
+
input_prompt = prompt_output.prompt
|
296 |
+
input_prompt = [input_prompt]
|
297 |
+
else:
|
298 |
+
input_prompt = [None]
|
299 |
+
if dist.is_initialized():
|
300 |
+
dist.broadcast_object_list(input_prompt, src=0)
|
301 |
+
args.prompt = input_prompt[0]
|
302 |
+
logging.info(f"Extended prompt: {args.prompt}")
|
303 |
+
|
304 |
+
if "t2v" in args.task:
|
305 |
+
logging.info("Creating WanT2V pipeline.")
|
306 |
+
wan_t2v = wan.WanT2V(
|
307 |
+
config=cfg,
|
308 |
+
checkpoint_dir=args.ckpt_dir,
|
309 |
+
device_id=device,
|
310 |
+
rank=rank,
|
311 |
+
t5_fsdp=args.t5_fsdp,
|
312 |
+
dit_fsdp=args.dit_fsdp,
|
313 |
+
use_sp=(args.ulysses_size > 1),
|
314 |
+
t5_cpu=args.t5_cpu,
|
315 |
+
convert_model_dtype=args.convert_model_dtype,
|
316 |
+
)
|
317 |
+
|
318 |
+
logging.info(f"Generating video ...")
|
319 |
+
video = wan_t2v.generate(
|
320 |
+
args.prompt,
|
321 |
+
size=SIZE_CONFIGS[args.size],
|
322 |
+
frame_num=args.frame_num,
|
323 |
+
shift=args.sample_shift,
|
324 |
+
sample_solver=args.sample_solver,
|
325 |
+
sampling_steps=args.sample_steps,
|
326 |
+
guide_scale=args.sample_guide_scale,
|
327 |
+
seed=args.base_seed,
|
328 |
+
offload_model=args.offload_model)
|
329 |
+
elif "ti2v" in args.task:
|
330 |
+
logging.info("Creating WanTI2V pipeline.")
|
331 |
+
wan_ti2v = wan.WanTI2V(
|
332 |
+
config=cfg,
|
333 |
+
checkpoint_dir=args.ckpt_dir,
|
334 |
+
device_id=device,
|
335 |
+
rank=rank,
|
336 |
+
t5_fsdp=args.t5_fsdp,
|
337 |
+
dit_fsdp=args.dit_fsdp,
|
338 |
+
use_sp=(args.ulysses_size > 1),
|
339 |
+
t5_cpu=args.t5_cpu,
|
340 |
+
convert_model_dtype=args.convert_model_dtype,
|
341 |
+
)
|
342 |
+
|
343 |
+
logging.info(f"Generating video ...")
|
344 |
+
video = wan_ti2v.generate(
|
345 |
+
args.prompt,
|
346 |
+
img=img,
|
347 |
+
size=SIZE_CONFIGS[args.size],
|
348 |
+
max_area=MAX_AREA_CONFIGS[args.size],
|
349 |
+
frame_num=args.frame_num,
|
350 |
+
shift=args.sample_shift,
|
351 |
+
sample_solver=args.sample_solver,
|
352 |
+
sampling_steps=args.sample_steps,
|
353 |
+
guide_scale=args.sample_guide_scale,
|
354 |
+
seed=args.base_seed,
|
355 |
+
offload_model=args.offload_model)
|
356 |
+
else:
|
357 |
+
logging.info("Creating WanI2V pipeline.")
|
358 |
+
wan_i2v = wan.WanI2V(
|
359 |
+
config=cfg,
|
360 |
+
checkpoint_dir=args.ckpt_dir,
|
361 |
+
device_id=device,
|
362 |
+
rank=rank,
|
363 |
+
t5_fsdp=args.t5_fsdp,
|
364 |
+
dit_fsdp=args.dit_fsdp,
|
365 |
+
use_sp=(args.ulysses_size > 1),
|
366 |
+
t5_cpu=args.t5_cpu,
|
367 |
+
convert_model_dtype=args.convert_model_dtype,
|
368 |
+
)
|
369 |
+
|
370 |
+
logging.info("Generating video ...")
|
371 |
+
video = wan_i2v.generate(
|
372 |
+
args.prompt,
|
373 |
+
img,
|
374 |
+
max_area=MAX_AREA_CONFIGS[args.size],
|
375 |
+
frame_num=args.frame_num,
|
376 |
+
shift=args.sample_shift,
|
377 |
+
sample_solver=args.sample_solver,
|
378 |
+
sampling_steps=args.sample_steps,
|
379 |
+
guide_scale=args.sample_guide_scale,
|
380 |
+
seed=args.base_seed,
|
381 |
+
offload_model=args.offload_model)
|
382 |
+
|
383 |
+
if rank == 0:
|
384 |
+
if args.save_file is None:
|
385 |
+
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
386 |
+
formatted_prompt = args.prompt.replace(" ", "_").replace("/",
|
387 |
+
"_")[:50]
|
388 |
+
suffix = '.mp4'
|
389 |
+
args.save_file = f"{args.task}_{args.size.replace('*','x') if sys.platform=='win32' else args.size}_{args.ulysses_size}_{formatted_prompt}_{formatted_time}" + suffix
|
390 |
+
|
391 |
+
logging.info(f"Saving generated video to {args.save_file}")
|
392 |
+
cache_video(
|
393 |
+
tensor=video[None],
|
394 |
+
save_file=args.save_file,
|
395 |
+
fps=cfg.sample_fps,
|
396 |
+
nrow=1,
|
397 |
+
normalize=True,
|
398 |
+
value_range=(-1, 1))
|
399 |
+
del video
|
400 |
+
|
401 |
+
torch.cuda.synchronize()
|
402 |
+
if dist.is_initialized():
|
403 |
+
dist.barrier()
|
404 |
+
dist.destroy_process_group()
|
405 |
+
|
406 |
+
logging.info("Finished.")
|
407 |
+
|
408 |
+
|
409 |
+
if __name__ == "__main__":
|
410 |
+
args = _parse_args()
|
411 |
+
generate(args)
|
gradio_ti2v.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# wan2.2-main/gradio_ti2v.py
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
from PIL import Image
|
8 |
+
import random
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Add project root to sys.path to allow importing 'wan'
|
12 |
+
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
13 |
+
|
14 |
+
import wan
|
15 |
+
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
16 |
+
from wan.utils.utils import cache_video
|
17 |
+
|
18 |
+
# --- 1. Global Setup and Model Loading ---
|
19 |
+
|
20 |
+
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
|
21 |
+
|
22 |
+
# Download model snapshots from Hugging Face Hub
|
23 |
+
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
|
24 |
+
print(f"Downloading/loading checkpoints for {repo_id}...")
|
25 |
+
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
|
26 |
+
print(f"Using checkpoints from {ckpt_dir}")
|
27 |
+
|
28 |
+
# Load the model configuration
|
29 |
+
TASK_NAME = 'ti2v-5B'
|
30 |
+
cfg = WAN_CONFIGS[TASK_NAME]
|
31 |
+
FIXED_FPS = 24
|
32 |
+
MIN_FRAMES_MODEL = 8
|
33 |
+
MAX_FRAMES_MODEL = 121
|
34 |
+
|
35 |
+
# Instantiate the pipeline in the global scope
|
36 |
+
print("Initializing WanTI2V pipeline...")
|
37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
device_id = 0 if torch.cuda.is_available() else -1
|
39 |
+
pipeline = wan.WanTI2V(
|
40 |
+
config=cfg,
|
41 |
+
checkpoint_dir=ckpt_dir,
|
42 |
+
device_id=device_id,
|
43 |
+
rank=0,
|
44 |
+
t5_fsdp=False,
|
45 |
+
dit_fsdp=False,
|
46 |
+
use_sp=False,
|
47 |
+
t5_cpu=False,
|
48 |
+
init_on_cpu=True,
|
49 |
+
convert_model_dtype=True,
|
50 |
+
)
|
51 |
+
print("Pipeline initialized and ready.")
|
52 |
+
|
53 |
+
|
54 |
+
# --- 2. Gradio Inference Function ---
|
55 |
+
def generate_video(
|
56 |
+
image,
|
57 |
+
prompt,
|
58 |
+
size,
|
59 |
+
duration_seconds,
|
60 |
+
sampling_steps,
|
61 |
+
guide_scale,
|
62 |
+
shift,
|
63 |
+
seed,
|
64 |
+
progress=gr.Progress(track_tqdm=True)
|
65 |
+
):
|
66 |
+
"""The main function to generate video, called by the Gradio interface."""
|
67 |
+
if seed == -1:
|
68 |
+
seed = random.randint(0, sys.maxsize)
|
69 |
+
|
70 |
+
input_image = Image.fromarray(image).convert("RGB") if image is not None else None
|
71 |
+
|
72 |
+
# Calculate number of frames based on duration
|
73 |
+
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
74 |
+
|
75 |
+
video_tensor = pipeline.generate(
|
76 |
+
input_prompt=prompt,
|
77 |
+
img=input_image, # Pass None for T2V, Image for I2V
|
78 |
+
size=SIZE_CONFIGS[size],
|
79 |
+
max_area=MAX_AREA_CONFIGS[size],
|
80 |
+
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
|
81 |
+
shift=shift,
|
82 |
+
sample_solver='unipc',
|
83 |
+
sampling_steps=int(sampling_steps),
|
84 |
+
guide_scale=guide_scale,
|
85 |
+
seed=seed,
|
86 |
+
offload_model=True
|
87 |
+
)
|
88 |
+
|
89 |
+
# Save the video to a temporary file
|
90 |
+
video_path = cache_video(
|
91 |
+
tensor=video_tensor[None], # Add a batch dimension
|
92 |
+
save_file=None, # cache_video will create a temp file
|
93 |
+
fps=cfg.sample_fps,
|
94 |
+
normalize=True,
|
95 |
+
value_range=(-1, 1)
|
96 |
+
)
|
97 |
+
|
98 |
+
return video_path
|
99 |
+
|
100 |
+
|
101 |
+
# --- 3. Gradio Interface ---
|
102 |
+
css = ".gradio-container {max-width: 1100px !important} #output_video {height: 500px;} #input_image {height: 500px;}"
|
103 |
+
|
104 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
105 |
+
gr.Markdown("# Wan 2.2 Text/Image-to-Video Demo (ti2v-5B)")
|
106 |
+
gr.Markdown("Generate a video from a text prompt. Optionally, provide an initial image to guide the generation (Image-to-Video).")
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column(scale=2):
|
110 |
+
image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
|
111 |
+
prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
|
112 |
+
duration_input = gr.Slider(
|
113 |
+
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
|
114 |
+
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
|
115 |
+
step=0.1,
|
116 |
+
value=2.0,
|
117 |
+
label="Duration (seconds)",
|
118 |
+
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
119 |
+
)
|
120 |
+
size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280")
|
121 |
+
with gr.Column(scale=2):
|
122 |
+
video_output = gr.Video(label="Generated Video", elem_id="output_video")
|
123 |
+
|
124 |
+
|
125 |
+
with gr.Accordion("Advanced Settings", open=False):
|
126 |
+
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=70, value=35, step=1)
|
127 |
+
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
|
128 |
+
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
|
129 |
+
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
130 |
+
|
131 |
+
run_button = gr.Button("Generate Video", variant="primary")
|
132 |
+
|
133 |
+
|
134 |
+
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
|
135 |
+
gr.Examples(
|
136 |
+
examples=[
|
137 |
+
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", "1280*704", 2.0],
|
138 |
+
[example_image_path, "The cat slowly blinks its eyes.", "704*1280", 1.5],
|
139 |
+
[None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 3.0],
|
140 |
+
],
|
141 |
+
inputs=[image_input, prompt_input, size_input, duration_input],
|
142 |
+
outputs=video_output,
|
143 |
+
fn=generate_video,
|
144 |
+
cache_examples=False,
|
145 |
+
)
|
146 |
+
|
147 |
+
run_button.click(
|
148 |
+
fn=generate_video,
|
149 |
+
inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input],
|
150 |
+
outputs=video_output
|
151 |
+
)
|
152 |
+
|
153 |
+
if __name__ == "__main__":
|
154 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.4.0
|
2 |
+
torchvision>=0.19.0
|
3 |
+
opencv-python>=4.9.0.80
|
4 |
+
diffusers>=0.31.0
|
5 |
+
transformers>=4.49.0
|
6 |
+
tokenizers>=0.20.3
|
7 |
+
accelerate>=1.1.1
|
8 |
+
tqdm
|
9 |
+
imageio
|
10 |
+
easydict
|
11 |
+
ftfy
|
12 |
+
dashscope
|
13 |
+
imageio-ffmpeg
|
14 |
+
flash_attn
|
15 |
+
numpy>=1.23.5,<2
|
wan/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
from . import configs, distributed, modules
|
3 |
+
from .image2video import WanI2V
|
4 |
+
from .text2video import WanT2V
|
5 |
+
from .textimage2video import WanTI2V
|
wan/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (341 Bytes). View file
|
|
wan/__pycache__/image2video.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
wan/__pycache__/text2video.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
wan/__pycache__/textimage2video.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
wan/configs/__init__.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import copy
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
6 |
+
|
7 |
+
from .wan_i2v_A14B import i2v_A14B
|
8 |
+
from .wan_t2v_A14B import t2v_A14B
|
9 |
+
from .wan_ti2v_5B import ti2v_5B
|
10 |
+
|
11 |
+
WAN_CONFIGS = {
|
12 |
+
't2v-A14B': t2v_A14B,
|
13 |
+
'i2v-A14B': i2v_A14B,
|
14 |
+
'ti2v-5B': ti2v_5B,
|
15 |
+
}
|
16 |
+
|
17 |
+
SIZE_CONFIGS = {
|
18 |
+
'720*1280': (720, 1280),
|
19 |
+
'1280*720': (1280, 720),
|
20 |
+
'480*832': (480, 832),
|
21 |
+
'832*480': (832, 480),
|
22 |
+
'704*1280': (704, 1280),
|
23 |
+
'1280*704': (1280, 704)
|
24 |
+
}
|
25 |
+
|
26 |
+
MAX_AREA_CONFIGS = {
|
27 |
+
'720*1280': 720 * 1280,
|
28 |
+
'1280*720': 1280 * 720,
|
29 |
+
'480*832': 480 * 832,
|
30 |
+
'832*480': 832 * 480,
|
31 |
+
'704*1280': 704 * 1280,
|
32 |
+
'1280*704': 1280 * 704,
|
33 |
+
}
|
34 |
+
|
35 |
+
SUPPORTED_SIZES = {
|
36 |
+
't2v-A14B': ('720*1280', '1280*720', '480*832', '832*480'),
|
37 |
+
'i2v-A14B': ('720*1280', '1280*720', '480*832', '832*480'),
|
38 |
+
'ti2v-5B': ('704*1280', '1280*704'),
|
39 |
+
}
|
wan/configs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (745 Bytes). View file
|
|
wan/configs/__pycache__/shared_config.cpython-310.pyc
ADDED
Binary file (856 Bytes). View file
|
|
wan/configs/__pycache__/wan_i2v_A14B.cpython-310.pyc
ADDED
Binary file (976 Bytes). View file
|
|
wan/configs/__pycache__/wan_t2v_A14B.cpython-310.pyc
ADDED
Binary file (963 Bytes). View file
|
|
wan/configs/__pycache__/wan_ti2v_5B.cpython-310.pyc
ADDED
Binary file (871 Bytes). View file
|
|
wan/configs/shared_config.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from easydict import EasyDict
|
4 |
+
|
5 |
+
#------------------------ Wan shared config ------------------------#
|
6 |
+
wan_shared_cfg = EasyDict()
|
7 |
+
|
8 |
+
# t5
|
9 |
+
wan_shared_cfg.t5_model = 'umt5_xxl'
|
10 |
+
wan_shared_cfg.t5_dtype = torch.bfloat16
|
11 |
+
wan_shared_cfg.text_len = 512
|
12 |
+
|
13 |
+
# transformer
|
14 |
+
wan_shared_cfg.param_dtype = torch.bfloat16
|
15 |
+
|
16 |
+
# inference
|
17 |
+
wan_shared_cfg.num_train_timesteps = 1000
|
18 |
+
wan_shared_cfg.sample_fps = 16
|
19 |
+
wan_shared_cfg.sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走'
|
20 |
+
wan_shared_cfg.frame_num = 81
|
wan/configs/wan_i2v_A14B.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from easydict import EasyDict
|
4 |
+
|
5 |
+
from .shared_config import wan_shared_cfg
|
6 |
+
|
7 |
+
#------------------------ Wan I2V A14B ------------------------#
|
8 |
+
|
9 |
+
i2v_A14B = EasyDict(__name__='Config: Wan I2V A14B')
|
10 |
+
i2v_A14B.update(wan_shared_cfg)
|
11 |
+
|
12 |
+
i2v_A14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
|
13 |
+
i2v_A14B.t5_tokenizer = 'google/umt5-xxl'
|
14 |
+
|
15 |
+
# vae
|
16 |
+
i2v_A14B.vae_checkpoint = 'Wan2.1_VAE.pth'
|
17 |
+
i2v_A14B.vae_stride = (4, 8, 8)
|
18 |
+
|
19 |
+
# transformer
|
20 |
+
i2v_A14B.patch_size = (1, 2, 2)
|
21 |
+
i2v_A14B.dim = 5120
|
22 |
+
i2v_A14B.ffn_dim = 13824
|
23 |
+
i2v_A14B.freq_dim = 256
|
24 |
+
i2v_A14B.num_heads = 40
|
25 |
+
i2v_A14B.num_layers = 40
|
26 |
+
i2v_A14B.window_size = (-1, -1)
|
27 |
+
i2v_A14B.qk_norm = True
|
28 |
+
i2v_A14B.cross_attn_norm = True
|
29 |
+
i2v_A14B.eps = 1e-6
|
30 |
+
i2v_A14B.low_noise_checkpoint = 'low_noise_model'
|
31 |
+
i2v_A14B.high_noise_checkpoint = 'high_noise_model'
|
32 |
+
|
33 |
+
# inference
|
34 |
+
i2v_A14B.sample_shift = 5.0
|
35 |
+
i2v_A14B.sample_steps = 40
|
36 |
+
i2v_A14B.boundary = 0.900
|
37 |
+
i2v_A14B.sample_guide_scale = (3.5, 3.5) # low noise, high noise
|
wan/configs/wan_t2v_A14B.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
from easydict import EasyDict
|
3 |
+
|
4 |
+
from .shared_config import wan_shared_cfg
|
5 |
+
|
6 |
+
#------------------------ Wan T2V A14B ------------------------#
|
7 |
+
|
8 |
+
t2v_A14B = EasyDict(__name__='Config: Wan T2V A14B')
|
9 |
+
t2v_A14B.update(wan_shared_cfg)
|
10 |
+
|
11 |
+
# t5
|
12 |
+
t2v_A14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
|
13 |
+
t2v_A14B.t5_tokenizer = 'google/umt5-xxl'
|
14 |
+
|
15 |
+
# vae
|
16 |
+
t2v_A14B.vae_checkpoint = 'Wan2.1_VAE.pth'
|
17 |
+
t2v_A14B.vae_stride = (4, 8, 8)
|
18 |
+
|
19 |
+
# transformer
|
20 |
+
t2v_A14B.patch_size = (1, 2, 2)
|
21 |
+
t2v_A14B.dim = 5120
|
22 |
+
t2v_A14B.ffn_dim = 13824
|
23 |
+
t2v_A14B.freq_dim = 256
|
24 |
+
t2v_A14B.num_heads = 40
|
25 |
+
t2v_A14B.num_layers = 40
|
26 |
+
t2v_A14B.window_size = (-1, -1)
|
27 |
+
t2v_A14B.qk_norm = True
|
28 |
+
t2v_A14B.cross_attn_norm = True
|
29 |
+
t2v_A14B.eps = 1e-6
|
30 |
+
t2v_A14B.low_noise_checkpoint = 'low_noise_model'
|
31 |
+
t2v_A14B.high_noise_checkpoint = 'high_noise_model'
|
32 |
+
|
33 |
+
# inference
|
34 |
+
t2v_A14B.sample_shift = 12.0
|
35 |
+
t2v_A14B.sample_steps = 40
|
36 |
+
t2v_A14B.boundary = 0.875
|
37 |
+
t2v_A14B.sample_guide_scale = (3.0, 4.0) # low noise, high noise
|
wan/configs/wan_ti2v_5B.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
from easydict import EasyDict
|
3 |
+
|
4 |
+
from .shared_config import wan_shared_cfg
|
5 |
+
|
6 |
+
#------------------------ Wan TI2V 5B ------------------------#
|
7 |
+
|
8 |
+
ti2v_5B = EasyDict(__name__='Config: Wan TI2V 5B')
|
9 |
+
ti2v_5B.update(wan_shared_cfg)
|
10 |
+
|
11 |
+
# t5
|
12 |
+
ti2v_5B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
|
13 |
+
ti2v_5B.t5_tokenizer = 'google/umt5-xxl'
|
14 |
+
|
15 |
+
# vae
|
16 |
+
ti2v_5B.vae_checkpoint = 'Wan2.2_VAE.pth'
|
17 |
+
ti2v_5B.vae_stride = (4, 16, 16)
|
18 |
+
|
19 |
+
# transformer
|
20 |
+
ti2v_5B.patch_size = (1, 2, 2)
|
21 |
+
ti2v_5B.dim = 3072
|
22 |
+
ti2v_5B.ffn_dim = 14336
|
23 |
+
ti2v_5B.freq_dim = 256
|
24 |
+
ti2v_5B.num_heads = 24
|
25 |
+
ti2v_5B.num_layers = 30
|
26 |
+
ti2v_5B.window_size = (-1, -1)
|
27 |
+
ti2v_5B.qk_norm = True
|
28 |
+
ti2v_5B.cross_attn_norm = True
|
29 |
+
ti2v_5B.eps = 1e-6
|
30 |
+
|
31 |
+
# inference
|
32 |
+
ti2v_5B.sample_fps = 24
|
33 |
+
ti2v_5B.sample_shift = 5.0
|
34 |
+
ti2v_5B.sample_steps = 50
|
35 |
+
ti2v_5B.sample_guide_scale = 5.0
|
36 |
+
ti2v_5B.frame_num = 121
|
wan/distributed/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
wan/distributed/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (151 Bytes). View file
|
|
wan/distributed/__pycache__/fsdp.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
wan/distributed/__pycache__/sequence_parallel.cpython-310.pyc
ADDED
Binary file (5.25 kB). View file
|
|
wan/distributed/__pycache__/ulysses.cpython-310.pyc
ADDED
Binary file (1.24 kB). View file
|
|
wan/distributed/__pycache__/util.cpython-310.pyc
ADDED
Binary file (1.94 kB). View file
|
|
wan/distributed/fsdp.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import gc
|
3 |
+
from functools import partial
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
7 |
+
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
8 |
+
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
|
9 |
+
from torch.distributed.utils import _free_storage
|
10 |
+
|
11 |
+
|
12 |
+
def shard_model(
|
13 |
+
model,
|
14 |
+
device_id,
|
15 |
+
param_dtype=torch.bfloat16,
|
16 |
+
reduce_dtype=torch.float32,
|
17 |
+
buffer_dtype=torch.float32,
|
18 |
+
process_group=None,
|
19 |
+
sharding_strategy=ShardingStrategy.FULL_SHARD,
|
20 |
+
sync_module_states=True,
|
21 |
+
):
|
22 |
+
model = FSDP(
|
23 |
+
module=model,
|
24 |
+
process_group=process_group,
|
25 |
+
sharding_strategy=sharding_strategy,
|
26 |
+
auto_wrap_policy=partial(
|
27 |
+
lambda_auto_wrap_policy, lambda_fn=lambda m: m in model.blocks),
|
28 |
+
mixed_precision=MixedPrecision(
|
29 |
+
param_dtype=param_dtype,
|
30 |
+
reduce_dtype=reduce_dtype,
|
31 |
+
buffer_dtype=buffer_dtype),
|
32 |
+
device_id=device_id,
|
33 |
+
sync_module_states=sync_module_states)
|
34 |
+
return model
|
35 |
+
|
36 |
+
|
37 |
+
def free_model(model):
|
38 |
+
for m in model.modules():
|
39 |
+
if isinstance(m, FSDP):
|
40 |
+
_free_storage(m._handle.flat_param.data)
|
41 |
+
del model
|
42 |
+
gc.collect()
|
43 |
+
torch.cuda.empty_cache()
|
wan/distributed/sequence_parallel.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.cuda.amp as amp
|
4 |
+
|
5 |
+
from ..modules.model import sinusoidal_embedding_1d
|
6 |
+
from .ulysses import distributed_attention
|
7 |
+
from .util import gather_forward, get_rank, get_world_size
|
8 |
+
|
9 |
+
|
10 |
+
def pad_freqs(original_tensor, target_len):
|
11 |
+
seq_len, s1, s2 = original_tensor.shape
|
12 |
+
pad_size = target_len - seq_len
|
13 |
+
padding_tensor = torch.ones(
|
14 |
+
pad_size,
|
15 |
+
s1,
|
16 |
+
s2,
|
17 |
+
dtype=original_tensor.dtype,
|
18 |
+
device=original_tensor.device)
|
19 |
+
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
|
20 |
+
return padded_tensor
|
21 |
+
|
22 |
+
|
23 |
+
@torch.amp.autocast('cuda', enabled=False)
|
24 |
+
def rope_apply(x, grid_sizes, freqs):
|
25 |
+
"""
|
26 |
+
x: [B, L, N, C].
|
27 |
+
grid_sizes: [B, 3].
|
28 |
+
freqs: [M, C // 2].
|
29 |
+
"""
|
30 |
+
s, n, c = x.size(1), x.size(2), x.size(3) // 2
|
31 |
+
# split freqs
|
32 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
33 |
+
|
34 |
+
# loop over samples
|
35 |
+
output = []
|
36 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
37 |
+
seq_len = f * h * w
|
38 |
+
|
39 |
+
# precompute multipliers
|
40 |
+
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
|
41 |
+
s, n, -1, 2))
|
42 |
+
freqs_i = torch.cat([
|
43 |
+
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
44 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
45 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
46 |
+
],
|
47 |
+
dim=-1).reshape(seq_len, 1, -1)
|
48 |
+
|
49 |
+
# apply rotary embedding
|
50 |
+
sp_size = get_world_size()
|
51 |
+
sp_rank = get_rank()
|
52 |
+
freqs_i = pad_freqs(freqs_i, s * sp_size)
|
53 |
+
s_per_rank = s
|
54 |
+
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
|
55 |
+
s_per_rank), :, :]
|
56 |
+
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
|
57 |
+
x_i = torch.cat([x_i, x[i, s:]])
|
58 |
+
|
59 |
+
# append to collection
|
60 |
+
output.append(x_i)
|
61 |
+
return torch.stack(output).float()
|
62 |
+
|
63 |
+
|
64 |
+
def sp_dit_forward(
|
65 |
+
self,
|
66 |
+
x,
|
67 |
+
t,
|
68 |
+
context,
|
69 |
+
seq_len,
|
70 |
+
y=None,
|
71 |
+
):
|
72 |
+
"""
|
73 |
+
x: A list of videos each with shape [C, T, H, W].
|
74 |
+
t: [B].
|
75 |
+
context: A list of text embeddings each with shape [L, C].
|
76 |
+
"""
|
77 |
+
if self.model_type == 'i2v':
|
78 |
+
assert y is not None
|
79 |
+
# params
|
80 |
+
device = self.patch_embedding.weight.device
|
81 |
+
if self.freqs.device != device:
|
82 |
+
self.freqs = self.freqs.to(device)
|
83 |
+
|
84 |
+
if y is not None:
|
85 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
86 |
+
|
87 |
+
# embeddings
|
88 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
89 |
+
grid_sizes = torch.stack(
|
90 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
91 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
92 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
93 |
+
assert seq_lens.max() <= seq_len
|
94 |
+
x = torch.cat([
|
95 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
96 |
+
for u in x
|
97 |
+
])
|
98 |
+
|
99 |
+
# time embeddings
|
100 |
+
if t.dim() == 1:
|
101 |
+
t = t.expand(t.size(0), seq_len)
|
102 |
+
with torch.amp.autocast('cuda', dtype=torch.float32):
|
103 |
+
bt = t.size(0)
|
104 |
+
t = t.flatten()
|
105 |
+
e = self.time_embedding(
|
106 |
+
sinusoidal_embedding_1d(self.freq_dim,
|
107 |
+
t).unflatten(0, (bt, seq_len)).float())
|
108 |
+
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
109 |
+
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
110 |
+
|
111 |
+
# context
|
112 |
+
context_lens = None
|
113 |
+
context = self.text_embedding(
|
114 |
+
torch.stack([
|
115 |
+
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
116 |
+
for u in context
|
117 |
+
]))
|
118 |
+
|
119 |
+
# Context Parallel
|
120 |
+
x = torch.chunk(x, get_world_size(), dim=1)[get_rank()]
|
121 |
+
e = torch.chunk(e, get_world_size(), dim=1)[get_rank()]
|
122 |
+
e0 = torch.chunk(e0, get_world_size(), dim=1)[get_rank()]
|
123 |
+
|
124 |
+
# arguments
|
125 |
+
kwargs = dict(
|
126 |
+
e=e0,
|
127 |
+
seq_lens=seq_lens,
|
128 |
+
grid_sizes=grid_sizes,
|
129 |
+
freqs=self.freqs,
|
130 |
+
context=context,
|
131 |
+
context_lens=context_lens)
|
132 |
+
|
133 |
+
for block in self.blocks:
|
134 |
+
x = block(x, **kwargs)
|
135 |
+
|
136 |
+
# head
|
137 |
+
x = self.head(x, e)
|
138 |
+
|
139 |
+
# Context Parallel
|
140 |
+
x = gather_forward(x, dim=1)
|
141 |
+
|
142 |
+
# unpatchify
|
143 |
+
x = self.unpatchify(x, grid_sizes)
|
144 |
+
return [u.float() for u in x]
|
145 |
+
|
146 |
+
|
147 |
+
def sp_attn_forward(self, x, seq_lens, grid_sizes, freqs, dtype=torch.bfloat16):
|
148 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
149 |
+
half_dtypes = (torch.float16, torch.bfloat16)
|
150 |
+
|
151 |
+
def half(x):
|
152 |
+
return x if x.dtype in half_dtypes else x.to(dtype)
|
153 |
+
|
154 |
+
# query, key, value function
|
155 |
+
def qkv_fn(x):
|
156 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
157 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
158 |
+
v = self.v(x).view(b, s, n, d)
|
159 |
+
return q, k, v
|
160 |
+
|
161 |
+
q, k, v = qkv_fn(x)
|
162 |
+
q = rope_apply(q, grid_sizes, freqs)
|
163 |
+
k = rope_apply(k, grid_sizes, freqs)
|
164 |
+
|
165 |
+
x = distributed_attention(
|
166 |
+
half(q),
|
167 |
+
half(k),
|
168 |
+
half(v),
|
169 |
+
seq_lens,
|
170 |
+
window_size=self.window_size,
|
171 |
+
)
|
172 |
+
|
173 |
+
# output
|
174 |
+
x = x.flatten(2)
|
175 |
+
x = self.o(x)
|
176 |
+
return x
|
wan/distributed/ulysses.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.distributed as dist
|
4 |
+
|
5 |
+
from ..modules.attention import flash_attention
|
6 |
+
from .util import all_to_all
|
7 |
+
|
8 |
+
|
9 |
+
def distributed_attention(
|
10 |
+
q,
|
11 |
+
k,
|
12 |
+
v,
|
13 |
+
seq_lens,
|
14 |
+
window_size=(-1, -1),
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
Performs distributed attention based on DeepSpeed Ulysses attention mechanism.
|
18 |
+
please refer to https://arxiv.org/pdf/2309.14509
|
19 |
+
|
20 |
+
Args:
|
21 |
+
q: [B, Lq // p, Nq, C1].
|
22 |
+
k: [B, Lk // p, Nk, C1].
|
23 |
+
v: [B, Lk // p, Nk, C2]. Nq must be divisible by Nk.
|
24 |
+
seq_lens: [B], length of each sequence in batch
|
25 |
+
window_size: (left right). If not (-1, -1), apply sliding window local attention.
|
26 |
+
"""
|
27 |
+
if not dist.is_initialized():
|
28 |
+
raise ValueError("distributed group should be initialized.")
|
29 |
+
b = q.shape[0]
|
30 |
+
|
31 |
+
# gather q/k/v sequence
|
32 |
+
q = all_to_all(q, scatter_dim=2, gather_dim=1)
|
33 |
+
k = all_to_all(k, scatter_dim=2, gather_dim=1)
|
34 |
+
v = all_to_all(v, scatter_dim=2, gather_dim=1)
|
35 |
+
|
36 |
+
# apply attention
|
37 |
+
x = flash_attention(
|
38 |
+
q,
|
39 |
+
k,
|
40 |
+
v,
|
41 |
+
k_lens=seq_lens,
|
42 |
+
window_size=window_size,
|
43 |
+
)
|
44 |
+
|
45 |
+
# scatter q/k/v sequence
|
46 |
+
x = all_to_all(x, scatter_dim=1, gather_dim=2)
|
47 |
+
return x
|
wan/distributed/util.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.distributed as dist
|
4 |
+
|
5 |
+
|
6 |
+
def init_distributed_group():
|
7 |
+
"""r initialize sequence parallel group.
|
8 |
+
"""
|
9 |
+
if not dist.is_initialized():
|
10 |
+
dist.init_process_group(backend='nccl')
|
11 |
+
|
12 |
+
|
13 |
+
def get_rank():
|
14 |
+
return dist.get_rank()
|
15 |
+
|
16 |
+
|
17 |
+
def get_world_size():
|
18 |
+
return dist.get_world_size()
|
19 |
+
|
20 |
+
|
21 |
+
def all_to_all(x, scatter_dim, gather_dim, group=None, **kwargs):
|
22 |
+
"""
|
23 |
+
`scatter` along one dimension and `gather` along another.
|
24 |
+
"""
|
25 |
+
world_size = get_world_size()
|
26 |
+
if world_size > 1:
|
27 |
+
inputs = [u.contiguous() for u in x.chunk(world_size, dim=scatter_dim)]
|
28 |
+
outputs = [torch.empty_like(u) for u in inputs]
|
29 |
+
dist.all_to_all(outputs, inputs, group=group, **kwargs)
|
30 |
+
x = torch.cat(outputs, dim=gather_dim).contiguous()
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
def all_gather(tensor):
|
35 |
+
world_size = dist.get_world_size()
|
36 |
+
if world_size == 1:
|
37 |
+
return [tensor]
|
38 |
+
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
39 |
+
torch.distributed.all_gather(tensor_list, tensor)
|
40 |
+
return tensor_list
|
41 |
+
|
42 |
+
|
43 |
+
def gather_forward(input, dim):
|
44 |
+
# skip if world_size == 1
|
45 |
+
world_size = dist.get_world_size()
|
46 |
+
if world_size == 1:
|
47 |
+
return input
|
48 |
+
|
49 |
+
# gather sequence
|
50 |
+
output = all_gather(input)
|
51 |
+
return torch.cat(output, dim=dim).contiguous()
|
wan/image2video.py
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import gc
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import types
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from functools import partial
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.cuda.amp as amp
|
15 |
+
import torch.distributed as dist
|
16 |
+
import torchvision.transforms.functional as TF
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
from .distributed.fsdp import shard_model
|
20 |
+
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward
|
21 |
+
from .distributed.util import get_world_size
|
22 |
+
from .modules.model import WanModel
|
23 |
+
from .modules.t5 import T5EncoderModel
|
24 |
+
from .modules.vae2_1 import Wan2_1_VAE
|
25 |
+
from .utils.fm_solvers import (
|
26 |
+
FlowDPMSolverMultistepScheduler,
|
27 |
+
get_sampling_sigmas,
|
28 |
+
retrieve_timesteps,
|
29 |
+
)
|
30 |
+
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
31 |
+
|
32 |
+
|
33 |
+
class WanI2V:
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
config,
|
38 |
+
checkpoint_dir,
|
39 |
+
device_id=0,
|
40 |
+
rank=0,
|
41 |
+
t5_fsdp=False,
|
42 |
+
dit_fsdp=False,
|
43 |
+
use_sp=False,
|
44 |
+
t5_cpu=False,
|
45 |
+
init_on_cpu=True,
|
46 |
+
convert_model_dtype=False,
|
47 |
+
):
|
48 |
+
r"""
|
49 |
+
Initializes the image-to-video generation model components.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
config (EasyDict):
|
53 |
+
Object containing model parameters initialized from config.py
|
54 |
+
checkpoint_dir (`str`):
|
55 |
+
Path to directory containing model checkpoints
|
56 |
+
device_id (`int`, *optional*, defaults to 0):
|
57 |
+
Id of target GPU device
|
58 |
+
rank (`int`, *optional*, defaults to 0):
|
59 |
+
Process rank for distributed training
|
60 |
+
t5_fsdp (`bool`, *optional*, defaults to False):
|
61 |
+
Enable FSDP sharding for T5 model
|
62 |
+
dit_fsdp (`bool`, *optional*, defaults to False):
|
63 |
+
Enable FSDP sharding for DiT model
|
64 |
+
use_sp (`bool`, *optional*, defaults to False):
|
65 |
+
Enable distribution strategy of sequence parallel.
|
66 |
+
t5_cpu (`bool`, *optional*, defaults to False):
|
67 |
+
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
68 |
+
init_on_cpu (`bool`, *optional*, defaults to True):
|
69 |
+
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
|
70 |
+
convert_model_dtype (`bool`, *optional*, defaults to False):
|
71 |
+
Convert DiT model parameters dtype to 'config.param_dtype'.
|
72 |
+
Only works without FSDP.
|
73 |
+
"""
|
74 |
+
self.device = torch.device(f"cuda:{device_id}")
|
75 |
+
self.config = config
|
76 |
+
self.rank = rank
|
77 |
+
self.t5_cpu = t5_cpu
|
78 |
+
self.init_on_cpu = init_on_cpu
|
79 |
+
|
80 |
+
self.num_train_timesteps = config.num_train_timesteps
|
81 |
+
self.boundary = config.boundary
|
82 |
+
self.param_dtype = config.param_dtype
|
83 |
+
|
84 |
+
if t5_fsdp or dit_fsdp or use_sp:
|
85 |
+
self.init_on_cpu = False
|
86 |
+
|
87 |
+
shard_fn = partial(shard_model, device_id=device_id)
|
88 |
+
self.text_encoder = T5EncoderModel(
|
89 |
+
text_len=config.text_len,
|
90 |
+
dtype=config.t5_dtype,
|
91 |
+
device=torch.device('cpu'),
|
92 |
+
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
|
93 |
+
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
94 |
+
shard_fn=shard_fn if t5_fsdp else None,
|
95 |
+
)
|
96 |
+
|
97 |
+
self.vae_stride = config.vae_stride
|
98 |
+
self.patch_size = config.patch_size
|
99 |
+
self.vae = Wan2_1_VAE(
|
100 |
+
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
101 |
+
device=self.device)
|
102 |
+
|
103 |
+
logging.info(f"Creating WanModel from {checkpoint_dir}")
|
104 |
+
self.low_noise_model = WanModel.from_pretrained(
|
105 |
+
checkpoint_dir, subfolder=config.low_noise_checkpoint)
|
106 |
+
self.low_noise_model = self._configure_model(
|
107 |
+
model=self.low_noise_model,
|
108 |
+
use_sp=use_sp,
|
109 |
+
dit_fsdp=dit_fsdp,
|
110 |
+
shard_fn=shard_fn,
|
111 |
+
convert_model_dtype=convert_model_dtype)
|
112 |
+
|
113 |
+
self.high_noise_model = WanModel.from_pretrained(
|
114 |
+
checkpoint_dir, subfolder=config.high_noise_checkpoint)
|
115 |
+
self.high_noise_model = self._configure_model(
|
116 |
+
model=self.high_noise_model,
|
117 |
+
use_sp=use_sp,
|
118 |
+
dit_fsdp=dit_fsdp,
|
119 |
+
shard_fn=shard_fn,
|
120 |
+
convert_model_dtype=convert_model_dtype)
|
121 |
+
if use_sp:
|
122 |
+
self.sp_size = get_world_size()
|
123 |
+
else:
|
124 |
+
self.sp_size = 1
|
125 |
+
|
126 |
+
self.sample_neg_prompt = config.sample_neg_prompt
|
127 |
+
|
128 |
+
def _configure_model(self, model, use_sp, dit_fsdp, shard_fn,
|
129 |
+
convert_model_dtype):
|
130 |
+
"""
|
131 |
+
Configures a model object. This includes setting evaluation modes,
|
132 |
+
applying distributed parallel strategy, and handling device placement.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
model (torch.nn.Module):
|
136 |
+
The model instance to configure.
|
137 |
+
use_sp (`bool`):
|
138 |
+
Enable distribution strategy of sequence parallel.
|
139 |
+
dit_fsdp (`bool`):
|
140 |
+
Enable FSDP sharding for DiT model.
|
141 |
+
shard_fn (callable):
|
142 |
+
The function to apply FSDP sharding.
|
143 |
+
convert_model_dtype (`bool`):
|
144 |
+
Convert DiT model parameters dtype to 'config.param_dtype'.
|
145 |
+
Only works without FSDP.
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
torch.nn.Module:
|
149 |
+
The configured model.
|
150 |
+
"""
|
151 |
+
model.eval().requires_grad_(False)
|
152 |
+
|
153 |
+
if use_sp:
|
154 |
+
for block in model.blocks:
|
155 |
+
block.self_attn.forward = types.MethodType(
|
156 |
+
sp_attn_forward, block.self_attn)
|
157 |
+
model.forward = types.MethodType(sp_dit_forward, model)
|
158 |
+
|
159 |
+
if dist.is_initialized():
|
160 |
+
dist.barrier()
|
161 |
+
|
162 |
+
if dit_fsdp:
|
163 |
+
model = shard_fn(model)
|
164 |
+
else:
|
165 |
+
if convert_model_dtype:
|
166 |
+
model.to(self.param_dtype)
|
167 |
+
if not self.init_on_cpu:
|
168 |
+
model.to(self.device)
|
169 |
+
|
170 |
+
return model
|
171 |
+
|
172 |
+
def _prepare_model_for_timestep(self, t, boundary, offload_model):
|
173 |
+
r"""
|
174 |
+
Prepares and returns the required model for the current timestep.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
t (torch.Tensor):
|
178 |
+
current timestep.
|
179 |
+
boundary (`int`):
|
180 |
+
The timestep threshold. If `t` is at or above this value,
|
181 |
+
the `high_noise_model` is considered as the required model.
|
182 |
+
offload_model (`bool`):
|
183 |
+
A flag intended to control the offloading behavior.
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
torch.nn.Module:
|
187 |
+
The active model on the target device for the current timestep.
|
188 |
+
"""
|
189 |
+
if t.item() >= boundary:
|
190 |
+
required_model_name = 'high_noise_model'
|
191 |
+
offload_model_name = 'low_noise_model'
|
192 |
+
else:
|
193 |
+
required_model_name = 'low_noise_model'
|
194 |
+
offload_model_name = 'high_noise_model'
|
195 |
+
if offload_model or self.init_on_cpu:
|
196 |
+
if next(getattr(
|
197 |
+
self,
|
198 |
+
offload_model_name).parameters()).device.type == 'cuda':
|
199 |
+
getattr(self, offload_model_name).to('cpu')
|
200 |
+
if next(getattr(
|
201 |
+
self,
|
202 |
+
required_model_name).parameters()).device.type == 'cpu':
|
203 |
+
getattr(self, required_model_name).to(self.device)
|
204 |
+
return getattr(self, required_model_name)
|
205 |
+
|
206 |
+
def generate(self,
|
207 |
+
input_prompt,
|
208 |
+
img,
|
209 |
+
max_area=720 * 1280,
|
210 |
+
frame_num=81,
|
211 |
+
shift=5.0,
|
212 |
+
sample_solver='unipc',
|
213 |
+
sampling_steps=40,
|
214 |
+
guide_scale=5.0,
|
215 |
+
n_prompt="",
|
216 |
+
seed=-1,
|
217 |
+
offload_model=True):
|
218 |
+
r"""
|
219 |
+
Generates video frames from input image and text prompt using diffusion process.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
input_prompt (`str`):
|
223 |
+
Text prompt for content generation.
|
224 |
+
img (PIL.Image.Image):
|
225 |
+
Input image tensor. Shape: [3, H, W]
|
226 |
+
max_area (`int`, *optional*, defaults to 720*1280):
|
227 |
+
Maximum pixel area for latent space calculation. Controls video resolution scaling
|
228 |
+
frame_num (`int`, *optional*, defaults to 81):
|
229 |
+
How many frames to sample from a video. The number should be 4n+1
|
230 |
+
shift (`float`, *optional*, defaults to 5.0):
|
231 |
+
Noise schedule shift parameter. Affects temporal dynamics
|
232 |
+
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
|
233 |
+
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
234 |
+
Solver used to sample the video.
|
235 |
+
sampling_steps (`int`, *optional*, defaults to 40):
|
236 |
+
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
237 |
+
guide_scale (`float` or tuple[`float`], *optional*, defaults 5.0):
|
238 |
+
Classifier-free guidance scale. Controls prompt adherence vs. creativity.
|
239 |
+
If tuple, the first guide_scale will be used for low noise model and
|
240 |
+
the second guide_scale will be used for high noise model.
|
241 |
+
n_prompt (`str`, *optional*, defaults to ""):
|
242 |
+
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
243 |
+
seed (`int`, *optional*, defaults to -1):
|
244 |
+
Random seed for noise generation. If -1, use random seed
|
245 |
+
offload_model (`bool`, *optional*, defaults to True):
|
246 |
+
If True, offloads models to CPU during generation to save VRAM
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
torch.Tensor:
|
250 |
+
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
251 |
+
- C: Color channels (3 for RGB)
|
252 |
+
- N: Number of frames (81)
|
253 |
+
- H: Frame height (from max_area)
|
254 |
+
- W: Frame width from max_area)
|
255 |
+
"""
|
256 |
+
# preprocess
|
257 |
+
guide_scale = (guide_scale, guide_scale) if isinstance(
|
258 |
+
guide_scale, float) else guide_scale
|
259 |
+
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
|
260 |
+
|
261 |
+
F = frame_num
|
262 |
+
h, w = img.shape[1:]
|
263 |
+
aspect_ratio = h / w
|
264 |
+
lat_h = round(
|
265 |
+
np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
|
266 |
+
self.patch_size[1] * self.patch_size[1])
|
267 |
+
lat_w = round(
|
268 |
+
np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
|
269 |
+
self.patch_size[2] * self.patch_size[2])
|
270 |
+
h = lat_h * self.vae_stride[1]
|
271 |
+
w = lat_w * self.vae_stride[2]
|
272 |
+
|
273 |
+
max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
|
274 |
+
self.patch_size[1] * self.patch_size[2])
|
275 |
+
max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
|
276 |
+
|
277 |
+
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
278 |
+
seed_g = torch.Generator(device=self.device)
|
279 |
+
seed_g.manual_seed(seed)
|
280 |
+
noise = torch.randn(
|
281 |
+
16,
|
282 |
+
21,
|
283 |
+
lat_h,
|
284 |
+
lat_w,
|
285 |
+
dtype=torch.float32,
|
286 |
+
generator=seed_g,
|
287 |
+
device=self.device)
|
288 |
+
|
289 |
+
msk = torch.ones(1, 81, lat_h, lat_w, device=self.device)
|
290 |
+
msk[:, 1:] = 0
|
291 |
+
msk = torch.concat([
|
292 |
+
torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
|
293 |
+
],
|
294 |
+
dim=1)
|
295 |
+
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
|
296 |
+
msk = msk.transpose(1, 2)[0]
|
297 |
+
|
298 |
+
if n_prompt == "":
|
299 |
+
n_prompt = self.sample_neg_prompt
|
300 |
+
|
301 |
+
# preprocess
|
302 |
+
if not self.t5_cpu:
|
303 |
+
self.text_encoder.model.to(self.device)
|
304 |
+
context = self.text_encoder([input_prompt], self.device)
|
305 |
+
context_null = self.text_encoder([n_prompt], self.device)
|
306 |
+
if offload_model:
|
307 |
+
self.text_encoder.model.cpu()
|
308 |
+
else:
|
309 |
+
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
310 |
+
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
311 |
+
context = [t.to(self.device) for t in context]
|
312 |
+
context_null = [t.to(self.device) for t in context_null]
|
313 |
+
|
314 |
+
y = self.vae.encode([
|
315 |
+
torch.concat([
|
316 |
+
torch.nn.functional.interpolate(
|
317 |
+
img[None].cpu(), size=(h, w), mode='bicubic').transpose(
|
318 |
+
0, 1),
|
319 |
+
torch.zeros(3, 80, h, w)
|
320 |
+
],
|
321 |
+
dim=1).to(self.device)
|
322 |
+
])[0]
|
323 |
+
y = torch.concat([msk, y])
|
324 |
+
|
325 |
+
@contextmanager
|
326 |
+
def noop_no_sync():
|
327 |
+
yield
|
328 |
+
|
329 |
+
no_sync_low_noise = getattr(self.low_noise_model, 'no_sync',
|
330 |
+
noop_no_sync)
|
331 |
+
no_sync_high_noise = getattr(self.high_noise_model, 'no_sync',
|
332 |
+
noop_no_sync)
|
333 |
+
|
334 |
+
# evaluation mode
|
335 |
+
with (
|
336 |
+
torch.amp.autocast('cuda', dtype=self.param_dtype),
|
337 |
+
torch.no_grad(),
|
338 |
+
no_sync_low_noise(),
|
339 |
+
no_sync_high_noise(),
|
340 |
+
):
|
341 |
+
boundary = self.boundary * self.num_train_timesteps
|
342 |
+
|
343 |
+
if sample_solver == 'unipc':
|
344 |
+
sample_scheduler = FlowUniPCMultistepScheduler(
|
345 |
+
num_train_timesteps=self.num_train_timesteps,
|
346 |
+
shift=1,
|
347 |
+
use_dynamic_shifting=False)
|
348 |
+
sample_scheduler.set_timesteps(
|
349 |
+
sampling_steps, device=self.device, shift=shift)
|
350 |
+
timesteps = sample_scheduler.timesteps
|
351 |
+
elif sample_solver == 'dpm++':
|
352 |
+
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
353 |
+
num_train_timesteps=self.num_train_timesteps,
|
354 |
+
shift=1,
|
355 |
+
use_dynamic_shifting=False)
|
356 |
+
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
357 |
+
timesteps, _ = retrieve_timesteps(
|
358 |
+
sample_scheduler,
|
359 |
+
device=self.device,
|
360 |
+
sigmas=sampling_sigmas)
|
361 |
+
else:
|
362 |
+
raise NotImplementedError("Unsupported solver.")
|
363 |
+
|
364 |
+
# sample videos
|
365 |
+
latent = noise
|
366 |
+
|
367 |
+
arg_c = {
|
368 |
+
'context': [context[0]],
|
369 |
+
'seq_len': max_seq_len,
|
370 |
+
'y': [y],
|
371 |
+
}
|
372 |
+
|
373 |
+
arg_null = {
|
374 |
+
'context': context_null,
|
375 |
+
'seq_len': max_seq_len,
|
376 |
+
'y': [y],
|
377 |
+
}
|
378 |
+
|
379 |
+
if offload_model:
|
380 |
+
torch.cuda.empty_cache()
|
381 |
+
|
382 |
+
for _, t in enumerate(tqdm(timesteps)):
|
383 |
+
latent_model_input = [latent.to(self.device)]
|
384 |
+
timestep = [t]
|
385 |
+
|
386 |
+
timestep = torch.stack(timestep).to(self.device)
|
387 |
+
|
388 |
+
model = self._prepare_model_for_timestep(
|
389 |
+
t, boundary, offload_model)
|
390 |
+
sample_guide_scale = guide_scale[1] if t.item(
|
391 |
+
) >= boundary else guide_scale[0]
|
392 |
+
|
393 |
+
noise_pred_cond = model(
|
394 |
+
latent_model_input, t=timestep, **arg_c)[0]
|
395 |
+
if offload_model:
|
396 |
+
torch.cuda.empty_cache()
|
397 |
+
noise_pred_uncond = model(
|
398 |
+
latent_model_input, t=timestep, **arg_null)[0]
|
399 |
+
if offload_model:
|
400 |
+
torch.cuda.empty_cache()
|
401 |
+
noise_pred = noise_pred_uncond + sample_guide_scale * (
|
402 |
+
noise_pred_cond - noise_pred_uncond)
|
403 |
+
|
404 |
+
temp_x0 = sample_scheduler.step(
|
405 |
+
noise_pred.unsqueeze(0),
|
406 |
+
t,
|
407 |
+
latent.unsqueeze(0),
|
408 |
+
return_dict=False,
|
409 |
+
generator=seed_g)[0]
|
410 |
+
latent = temp_x0.squeeze(0)
|
411 |
+
|
412 |
+
x0 = [latent]
|
413 |
+
del latent_model_input, timestep
|
414 |
+
|
415 |
+
if offload_model:
|
416 |
+
self.low_noise_model.cpu()
|
417 |
+
self.high_noise_model.cpu()
|
418 |
+
torch.cuda.empty_cache()
|
419 |
+
|
420 |
+
if self.rank == 0:
|
421 |
+
videos = self.vae.decode(x0)
|
422 |
+
|
423 |
+
del noise, latent, x0
|
424 |
+
del sample_scheduler
|
425 |
+
if offload_model:
|
426 |
+
gc.collect()
|
427 |
+
torch.cuda.synchronize()
|
428 |
+
if dist.is_initialized():
|
429 |
+
dist.barrier()
|
430 |
+
|
431 |
+
return videos[0] if self.rank == 0 else None
|
wan/modules/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
from .attention import flash_attention
|
3 |
+
from .model import WanModel
|
4 |
+
from .t5 import T5Decoder, T5Encoder, T5EncoderModel, T5Model
|
5 |
+
from .tokenizers import HuggingfaceTokenizer
|
6 |
+
from .vae2_1 import Wan2_1_VAE
|
7 |
+
from .vae2_2 import Wan2_2_VAE
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'Wan2_1_VAE',
|
11 |
+
'Wan2_2_VAE',
|
12 |
+
'WanModel',
|
13 |
+
'T5Model',
|
14 |
+
'T5Encoder',
|
15 |
+
'T5Decoder',
|
16 |
+
'T5EncoderModel',
|
17 |
+
'HuggingfaceTokenizer',
|
18 |
+
'flash_attention',
|
19 |
+
]
|
wan/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (536 Bytes). View file
|
|
wan/modules/__pycache__/attention.cpython-310.pyc
ADDED
Binary file (3.96 kB). View file
|
|
wan/modules/__pycache__/model.cpython-310.pyc
ADDED
Binary file (16.9 kB). View file
|
|
wan/modules/__pycache__/t5.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
wan/modules/__pycache__/tokenizers.cpython-310.pyc
ADDED
Binary file (2.56 kB). View file
|
|
wan/modules/__pycache__/vae2_1.cpython-310.pyc
ADDED
Binary file (16.9 kB). View file
|
|
wan/modules/__pycache__/vae2_2.cpython-310.pyc
ADDED
Binary file (22.1 kB). View file
|
|
wan/modules/attention.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import torch
|
3 |
+
|
4 |
+
try:
|
5 |
+
import flash_attn_interface
|
6 |
+
FLASH_ATTN_3_AVAILABLE = True
|
7 |
+
except ModuleNotFoundError:
|
8 |
+
FLASH_ATTN_3_AVAILABLE = False
|
9 |
+
|
10 |
+
try:
|
11 |
+
import flash_attn
|
12 |
+
FLASH_ATTN_2_AVAILABLE = True
|
13 |
+
except ModuleNotFoundError:
|
14 |
+
FLASH_ATTN_2_AVAILABLE = False
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
'flash_attention',
|
20 |
+
'attention',
|
21 |
+
]
|
22 |
+
|
23 |
+
|
24 |
+
def flash_attention(
|
25 |
+
q,
|
26 |
+
k,
|
27 |
+
v,
|
28 |
+
q_lens=None,
|
29 |
+
k_lens=None,
|
30 |
+
dropout_p=0.,
|
31 |
+
softmax_scale=None,
|
32 |
+
q_scale=None,
|
33 |
+
causal=False,
|
34 |
+
window_size=(-1, -1),
|
35 |
+
deterministic=False,
|
36 |
+
dtype=torch.bfloat16,
|
37 |
+
version=None,
|
38 |
+
):
|
39 |
+
"""
|
40 |
+
q: [B, Lq, Nq, C1].
|
41 |
+
k: [B, Lk, Nk, C1].
|
42 |
+
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
|
43 |
+
q_lens: [B].
|
44 |
+
k_lens: [B].
|
45 |
+
dropout_p: float. Dropout probability.
|
46 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
47 |
+
causal: bool. Whether to apply causal attention mask.
|
48 |
+
window_size: (left right). If not (-1, -1), apply sliding window local attention.
|
49 |
+
deterministic: bool. If True, slightly slower and uses more memory.
|
50 |
+
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
|
51 |
+
"""
|
52 |
+
half_dtypes = (torch.float16, torch.bfloat16)
|
53 |
+
assert dtype in half_dtypes
|
54 |
+
assert q.device.type == 'cuda' and q.size(-1) <= 256
|
55 |
+
|
56 |
+
# params
|
57 |
+
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
|
58 |
+
|
59 |
+
def half(x):
|
60 |
+
return x if x.dtype in half_dtypes else x.to(dtype)
|
61 |
+
|
62 |
+
# preprocess query
|
63 |
+
if q_lens is None:
|
64 |
+
q = half(q.flatten(0, 1))
|
65 |
+
q_lens = torch.tensor(
|
66 |
+
[lq] * b, dtype=torch.int32).to(
|
67 |
+
device=q.device, non_blocking=True)
|
68 |
+
else:
|
69 |
+
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
|
70 |
+
|
71 |
+
# preprocess key, value
|
72 |
+
if k_lens is None:
|
73 |
+
k = half(k.flatten(0, 1))
|
74 |
+
v = half(v.flatten(0, 1))
|
75 |
+
k_lens = torch.tensor(
|
76 |
+
[lk] * b, dtype=torch.int32).to(
|
77 |
+
device=k.device, non_blocking=True)
|
78 |
+
else:
|
79 |
+
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
80 |
+
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
81 |
+
|
82 |
+
q = q.to(v.dtype)
|
83 |
+
k = k.to(v.dtype)
|
84 |
+
|
85 |
+
if q_scale is not None:
|
86 |
+
q = q * q_scale
|
87 |
+
|
88 |
+
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
|
89 |
+
warnings.warn(
|
90 |
+
'Flash attention 3 is not available, use flash attention 2 instead.'
|
91 |
+
)
|
92 |
+
|
93 |
+
# apply attention
|
94 |
+
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
|
95 |
+
# Note: dropout_p, window_size are not supported in FA3 now.
|
96 |
+
x = flash_attn_interface.flash_attn_varlen_func(
|
97 |
+
q=q,
|
98 |
+
k=k,
|
99 |
+
v=v,
|
100 |
+
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
101 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
102 |
+
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
103 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
104 |
+
seqused_q=None,
|
105 |
+
seqused_k=None,
|
106 |
+
max_seqlen_q=lq,
|
107 |
+
max_seqlen_k=lk,
|
108 |
+
softmax_scale=softmax_scale,
|
109 |
+
causal=causal,
|
110 |
+
deterministic=deterministic)[0].unflatten(0, (b, lq))
|
111 |
+
else:
|
112 |
+
assert FLASH_ATTN_2_AVAILABLE
|
113 |
+
x = flash_attn.flash_attn_varlen_func(
|
114 |
+
q=q,
|
115 |
+
k=k,
|
116 |
+
v=v,
|
117 |
+
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
118 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
119 |
+
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
120 |
+
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
121 |
+
max_seqlen_q=lq,
|
122 |
+
max_seqlen_k=lk,
|
123 |
+
dropout_p=dropout_p,
|
124 |
+
softmax_scale=softmax_scale,
|
125 |
+
causal=causal,
|
126 |
+
window_size=window_size,
|
127 |
+
deterministic=deterministic).unflatten(0, (b, lq))
|
128 |
+
|
129 |
+
# output
|
130 |
+
return x.type(out_dtype)
|
131 |
+
|
132 |
+
|
133 |
+
def attention(
|
134 |
+
q,
|
135 |
+
k,
|
136 |
+
v,
|
137 |
+
q_lens=None,
|
138 |
+
k_lens=None,
|
139 |
+
dropout_p=0.,
|
140 |
+
softmax_scale=None,
|
141 |
+
q_scale=None,
|
142 |
+
causal=False,
|
143 |
+
window_size=(-1, -1),
|
144 |
+
deterministic=False,
|
145 |
+
dtype=torch.bfloat16,
|
146 |
+
fa_version=None,
|
147 |
+
):
|
148 |
+
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
|
149 |
+
return flash_attention(
|
150 |
+
q=q,
|
151 |
+
k=k,
|
152 |
+
v=v,
|
153 |
+
q_lens=q_lens,
|
154 |
+
k_lens=k_lens,
|
155 |
+
dropout_p=dropout_p,
|
156 |
+
softmax_scale=softmax_scale,
|
157 |
+
q_scale=q_scale,
|
158 |
+
causal=causal,
|
159 |
+
window_size=window_size,
|
160 |
+
deterministic=deterministic,
|
161 |
+
dtype=dtype,
|
162 |
+
version=fa_version,
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
if q_lens is not None or k_lens is not None:
|
166 |
+
warnings.warn(
|
167 |
+
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
|
168 |
+
)
|
169 |
+
attn_mask = None
|
170 |
+
|
171 |
+
q = q.transpose(1, 2).to(dtype)
|
172 |
+
k = k.transpose(1, 2).to(dtype)
|
173 |
+
v = v.transpose(1, 2).to(dtype)
|
174 |
+
|
175 |
+
out = torch.nn.functional.scaled_dot_product_attention(
|
176 |
+
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
|
177 |
+
|
178 |
+
out = out.transpose(1, 2).contiguous()
|
179 |
+
return out
|
wan/modules/model.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
7 |
+
from diffusers.models.modeling_utils import ModelMixin
|
8 |
+
|
9 |
+
from .attention import flash_attention
|
10 |
+
|
11 |
+
__all__ = ['WanModel']
|
12 |
+
|
13 |
+
|
14 |
+
def sinusoidal_embedding_1d(dim, position):
|
15 |
+
# preprocess
|
16 |
+
assert dim % 2 == 0
|
17 |
+
half = dim // 2
|
18 |
+
position = position.type(torch.float64)
|
19 |
+
|
20 |
+
# calculation
|
21 |
+
sinusoid = torch.outer(
|
22 |
+
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
|
23 |
+
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
@torch.amp.autocast('cuda', enabled=False)
|
28 |
+
def rope_params(max_seq_len, dim, theta=10000):
|
29 |
+
assert dim % 2 == 0
|
30 |
+
freqs = torch.outer(
|
31 |
+
torch.arange(max_seq_len),
|
32 |
+
1.0 / torch.pow(theta,
|
33 |
+
torch.arange(0, dim, 2).to(torch.float64).div(dim)))
|
34 |
+
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
35 |
+
return freqs
|
36 |
+
|
37 |
+
|
38 |
+
@torch.amp.autocast('cuda', enabled=False)
|
39 |
+
def rope_apply(x, grid_sizes, freqs):
|
40 |
+
n, c = x.size(2), x.size(3) // 2
|
41 |
+
|
42 |
+
# split freqs
|
43 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
44 |
+
|
45 |
+
# loop over samples
|
46 |
+
output = []
|
47 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
48 |
+
seq_len = f * h * w
|
49 |
+
|
50 |
+
# precompute multipliers
|
51 |
+
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
|
52 |
+
seq_len, n, -1, 2))
|
53 |
+
freqs_i = torch.cat([
|
54 |
+
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
55 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
56 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
57 |
+
],
|
58 |
+
dim=-1).reshape(seq_len, 1, -1)
|
59 |
+
|
60 |
+
# apply rotary embedding
|
61 |
+
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
|
62 |
+
x_i = torch.cat([x_i, x[i, seq_len:]])
|
63 |
+
|
64 |
+
# append to collection
|
65 |
+
output.append(x_i)
|
66 |
+
return torch.stack(output).float()
|
67 |
+
|
68 |
+
|
69 |
+
class WanRMSNorm(nn.Module):
|
70 |
+
|
71 |
+
def __init__(self, dim, eps=1e-5):
|
72 |
+
super().__init__()
|
73 |
+
self.dim = dim
|
74 |
+
self.eps = eps
|
75 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
r"""
|
79 |
+
Args:
|
80 |
+
x(Tensor): Shape [B, L, C]
|
81 |
+
"""
|
82 |
+
return self._norm(x.float()).type_as(x) * self.weight
|
83 |
+
|
84 |
+
def _norm(self, x):
|
85 |
+
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
86 |
+
|
87 |
+
|
88 |
+
class WanLayerNorm(nn.LayerNorm):
|
89 |
+
|
90 |
+
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
|
91 |
+
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
r"""
|
95 |
+
Args:
|
96 |
+
x(Tensor): Shape [B, L, C]
|
97 |
+
"""
|
98 |
+
return super().forward(x.float()).type_as(x)
|
99 |
+
|
100 |
+
|
101 |
+
class WanSelfAttention(nn.Module):
|
102 |
+
|
103 |
+
def __init__(self,
|
104 |
+
dim,
|
105 |
+
num_heads,
|
106 |
+
window_size=(-1, -1),
|
107 |
+
qk_norm=True,
|
108 |
+
eps=1e-6):
|
109 |
+
assert dim % num_heads == 0
|
110 |
+
super().__init__()
|
111 |
+
self.dim = dim
|
112 |
+
self.num_heads = num_heads
|
113 |
+
self.head_dim = dim // num_heads
|
114 |
+
self.window_size = window_size
|
115 |
+
self.qk_norm = qk_norm
|
116 |
+
self.eps = eps
|
117 |
+
|
118 |
+
# layers
|
119 |
+
self.q = nn.Linear(dim, dim)
|
120 |
+
self.k = nn.Linear(dim, dim)
|
121 |
+
self.v = nn.Linear(dim, dim)
|
122 |
+
self.o = nn.Linear(dim, dim)
|
123 |
+
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
124 |
+
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
125 |
+
|
126 |
+
def forward(self, x, seq_lens, grid_sizes, freqs):
|
127 |
+
r"""
|
128 |
+
Args:
|
129 |
+
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
130 |
+
seq_lens(Tensor): Shape [B]
|
131 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
132 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
133 |
+
"""
|
134 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
135 |
+
|
136 |
+
# query, key, value function
|
137 |
+
def qkv_fn(x):
|
138 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
139 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
140 |
+
v = self.v(x).view(b, s, n, d)
|
141 |
+
return q, k, v
|
142 |
+
|
143 |
+
q, k, v = qkv_fn(x)
|
144 |
+
|
145 |
+
x = flash_attention(
|
146 |
+
q=rope_apply(q, grid_sizes, freqs),
|
147 |
+
k=rope_apply(k, grid_sizes, freqs),
|
148 |
+
v=v,
|
149 |
+
k_lens=seq_lens,
|
150 |
+
window_size=self.window_size)
|
151 |
+
|
152 |
+
# output
|
153 |
+
x = x.flatten(2)
|
154 |
+
x = self.o(x)
|
155 |
+
return x
|
156 |
+
|
157 |
+
|
158 |
+
class WanCrossAttention(WanSelfAttention):
|
159 |
+
|
160 |
+
def forward(self, x, context, context_lens):
|
161 |
+
r"""
|
162 |
+
Args:
|
163 |
+
x(Tensor): Shape [B, L1, C]
|
164 |
+
context(Tensor): Shape [B, L2, C]
|
165 |
+
context_lens(Tensor): Shape [B]
|
166 |
+
"""
|
167 |
+
b, n, d = x.size(0), self.num_heads, self.head_dim
|
168 |
+
|
169 |
+
# compute query, key, value
|
170 |
+
q = self.norm_q(self.q(x)).view(b, -1, n, d)
|
171 |
+
k = self.norm_k(self.k(context)).view(b, -1, n, d)
|
172 |
+
v = self.v(context).view(b, -1, n, d)
|
173 |
+
|
174 |
+
# compute attention
|
175 |
+
x = flash_attention(q, k, v, k_lens=context_lens)
|
176 |
+
|
177 |
+
# output
|
178 |
+
x = x.flatten(2)
|
179 |
+
x = self.o(x)
|
180 |
+
return x
|
181 |
+
|
182 |
+
|
183 |
+
class WanAttentionBlock(nn.Module):
|
184 |
+
|
185 |
+
def __init__(self,
|
186 |
+
dim,
|
187 |
+
ffn_dim,
|
188 |
+
num_heads,
|
189 |
+
window_size=(-1, -1),
|
190 |
+
qk_norm=True,
|
191 |
+
cross_attn_norm=False,
|
192 |
+
eps=1e-6):
|
193 |
+
super().__init__()
|
194 |
+
self.dim = dim
|
195 |
+
self.ffn_dim = ffn_dim
|
196 |
+
self.num_heads = num_heads
|
197 |
+
self.window_size = window_size
|
198 |
+
self.qk_norm = qk_norm
|
199 |
+
self.cross_attn_norm = cross_attn_norm
|
200 |
+
self.eps = eps
|
201 |
+
|
202 |
+
# layers
|
203 |
+
self.norm1 = WanLayerNorm(dim, eps)
|
204 |
+
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
205 |
+
eps)
|
206 |
+
self.norm3 = WanLayerNorm(
|
207 |
+
dim, eps,
|
208 |
+
elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
209 |
+
self.cross_attn = WanCrossAttention(dim, num_heads, (-1, -1), qk_norm,
|
210 |
+
eps)
|
211 |
+
self.norm2 = WanLayerNorm(dim, eps)
|
212 |
+
self.ffn = nn.Sequential(
|
213 |
+
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
|
214 |
+
nn.Linear(ffn_dim, dim))
|
215 |
+
|
216 |
+
# modulation
|
217 |
+
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
218 |
+
|
219 |
+
def forward(
|
220 |
+
self,
|
221 |
+
x,
|
222 |
+
e,
|
223 |
+
seq_lens,
|
224 |
+
grid_sizes,
|
225 |
+
freqs,
|
226 |
+
context,
|
227 |
+
context_lens,
|
228 |
+
):
|
229 |
+
r"""
|
230 |
+
Args:
|
231 |
+
x(Tensor): Shape [B, L, C]
|
232 |
+
e(Tensor): Shape [B, L1, 6, C]
|
233 |
+
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
234 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
235 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
236 |
+
"""
|
237 |
+
assert e.dtype == torch.float32
|
238 |
+
with torch.amp.autocast('cuda', dtype=torch.float32):
|
239 |
+
e = (self.modulation.unsqueeze(0) + e).chunk(6, dim=2)
|
240 |
+
assert e[0].dtype == torch.float32
|
241 |
+
|
242 |
+
# self-attention
|
243 |
+
y = self.self_attn(
|
244 |
+
self.norm1(x).float() * (1 + e[1].squeeze(2)) + e[0].squeeze(2),
|
245 |
+
seq_lens, grid_sizes, freqs)
|
246 |
+
with torch.amp.autocast('cuda', dtype=torch.float32):
|
247 |
+
x = x + y * e[2].squeeze(2)
|
248 |
+
|
249 |
+
# cross-attention & ffn function
|
250 |
+
def cross_attn_ffn(x, context, context_lens, e):
|
251 |
+
x = x + self.cross_attn(self.norm3(x), context, context_lens)
|
252 |
+
y = self.ffn(
|
253 |
+
self.norm2(x).float() * (1 + e[4].squeeze(2)) + e[3].squeeze(2))
|
254 |
+
with torch.amp.autocast('cuda', dtype=torch.float32):
|
255 |
+
x = x + y * e[5].squeeze(2)
|
256 |
+
return x
|
257 |
+
|
258 |
+
x = cross_attn_ffn(x, context, context_lens, e)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
class Head(nn.Module):
|
263 |
+
|
264 |
+
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
265 |
+
super().__init__()
|
266 |
+
self.dim = dim
|
267 |
+
self.out_dim = out_dim
|
268 |
+
self.patch_size = patch_size
|
269 |
+
self.eps = eps
|
270 |
+
|
271 |
+
# layers
|
272 |
+
out_dim = math.prod(patch_size) * out_dim
|
273 |
+
self.norm = WanLayerNorm(dim, eps)
|
274 |
+
self.head = nn.Linear(dim, out_dim)
|
275 |
+
|
276 |
+
# modulation
|
277 |
+
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
278 |
+
|
279 |
+
def forward(self, x, e):
|
280 |
+
r"""
|
281 |
+
Args:
|
282 |
+
x(Tensor): Shape [B, L1, C]
|
283 |
+
e(Tensor): Shape [B, L1, C]
|
284 |
+
"""
|
285 |
+
assert e.dtype == torch.float32
|
286 |
+
with torch.amp.autocast('cuda', dtype=torch.float32):
|
287 |
+
e = (self.modulation.unsqueeze(0) + e.unsqueeze(2)).chunk(2, dim=2)
|
288 |
+
x = (
|
289 |
+
self.head(
|
290 |
+
self.norm(x) * (1 + e[1].squeeze(2)) + e[0].squeeze(2)))
|
291 |
+
return x
|
292 |
+
|
293 |
+
|
294 |
+
class WanModel(ModelMixin, ConfigMixin):
|
295 |
+
r"""
|
296 |
+
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
297 |
+
"""
|
298 |
+
|
299 |
+
ignore_for_config = [
|
300 |
+
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
|
301 |
+
]
|
302 |
+
_no_split_modules = ['WanAttentionBlock']
|
303 |
+
|
304 |
+
@register_to_config
|
305 |
+
def __init__(self,
|
306 |
+
model_type='t2v',
|
307 |
+
patch_size=(1, 2, 2),
|
308 |
+
text_len=512,
|
309 |
+
in_dim=16,
|
310 |
+
dim=2048,
|
311 |
+
ffn_dim=8192,
|
312 |
+
freq_dim=256,
|
313 |
+
text_dim=4096,
|
314 |
+
out_dim=16,
|
315 |
+
num_heads=16,
|
316 |
+
num_layers=32,
|
317 |
+
window_size=(-1, -1),
|
318 |
+
qk_norm=True,
|
319 |
+
cross_attn_norm=True,
|
320 |
+
eps=1e-6):
|
321 |
+
r"""
|
322 |
+
Initialize the diffusion model backbone.
|
323 |
+
|
324 |
+
Args:
|
325 |
+
model_type (`str`, *optional*, defaults to 't2v'):
|
326 |
+
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
327 |
+
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
328 |
+
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
329 |
+
text_len (`int`, *optional*, defaults to 512):
|
330 |
+
Fixed length for text embeddings
|
331 |
+
in_dim (`int`, *optional*, defaults to 16):
|
332 |
+
Input video channels (C_in)
|
333 |
+
dim (`int`, *optional*, defaults to 2048):
|
334 |
+
Hidden dimension of the transformer
|
335 |
+
ffn_dim (`int`, *optional*, defaults to 8192):
|
336 |
+
Intermediate dimension in feed-forward network
|
337 |
+
freq_dim (`int`, *optional*, defaults to 256):
|
338 |
+
Dimension for sinusoidal time embeddings
|
339 |
+
text_dim (`int`, *optional*, defaults to 4096):
|
340 |
+
Input dimension for text embeddings
|
341 |
+
out_dim (`int`, *optional*, defaults to 16):
|
342 |
+
Output video channels (C_out)
|
343 |
+
num_heads (`int`, *optional*, defaults to 16):
|
344 |
+
Number of attention heads
|
345 |
+
num_layers (`int`, *optional*, defaults to 32):
|
346 |
+
Number of transformer blocks
|
347 |
+
window_size (`tuple`, *optional*, defaults to (-1, -1)):
|
348 |
+
Window size for local attention (-1 indicates global attention)
|
349 |
+
qk_norm (`bool`, *optional*, defaults to True):
|
350 |
+
Enable query/key normalization
|
351 |
+
cross_attn_norm (`bool`, *optional*, defaults to False):
|
352 |
+
Enable cross-attention normalization
|
353 |
+
eps (`float`, *optional*, defaults to 1e-6):
|
354 |
+
Epsilon value for normalization layers
|
355 |
+
"""
|
356 |
+
|
357 |
+
super().__init__()
|
358 |
+
|
359 |
+
assert model_type in ['t2v', 'i2v', 'ti2v']
|
360 |
+
self.model_type = model_type
|
361 |
+
|
362 |
+
self.patch_size = patch_size
|
363 |
+
self.text_len = text_len
|
364 |
+
self.in_dim = in_dim
|
365 |
+
self.dim = dim
|
366 |
+
self.ffn_dim = ffn_dim
|
367 |
+
self.freq_dim = freq_dim
|
368 |
+
self.text_dim = text_dim
|
369 |
+
self.out_dim = out_dim
|
370 |
+
self.num_heads = num_heads
|
371 |
+
self.num_layers = num_layers
|
372 |
+
self.window_size = window_size
|
373 |
+
self.qk_norm = qk_norm
|
374 |
+
self.cross_attn_norm = cross_attn_norm
|
375 |
+
self.eps = eps
|
376 |
+
|
377 |
+
# embeddings
|
378 |
+
self.patch_embedding = nn.Conv3d(
|
379 |
+
in_dim, dim, kernel_size=patch_size, stride=patch_size)
|
380 |
+
self.text_embedding = nn.Sequential(
|
381 |
+
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
|
382 |
+
nn.Linear(dim, dim))
|
383 |
+
|
384 |
+
self.time_embedding = nn.Sequential(
|
385 |
+
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
386 |
+
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
|
387 |
+
|
388 |
+
# blocks
|
389 |
+
self.blocks = nn.ModuleList([
|
390 |
+
WanAttentionBlock(dim, ffn_dim, num_heads, window_size, qk_norm,
|
391 |
+
cross_attn_norm, eps) for _ in range(num_layers)
|
392 |
+
])
|
393 |
+
|
394 |
+
# head
|
395 |
+
self.head = Head(dim, out_dim, patch_size, eps)
|
396 |
+
|
397 |
+
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
398 |
+
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
399 |
+
d = dim // num_heads
|
400 |
+
self.freqs = torch.cat([
|
401 |
+
rope_params(1024, d - 4 * (d // 6)),
|
402 |
+
rope_params(1024, 2 * (d // 6)),
|
403 |
+
rope_params(1024, 2 * (d // 6))
|
404 |
+
],
|
405 |
+
dim=1)
|
406 |
+
|
407 |
+
# initialize weights
|
408 |
+
self.init_weights()
|
409 |
+
|
410 |
+
def forward(
|
411 |
+
self,
|
412 |
+
x,
|
413 |
+
t,
|
414 |
+
context,
|
415 |
+
seq_len,
|
416 |
+
y=None,
|
417 |
+
):
|
418 |
+
r"""
|
419 |
+
Forward pass through the diffusion model
|
420 |
+
|
421 |
+
Args:
|
422 |
+
x (List[Tensor]):
|
423 |
+
List of input video tensors, each with shape [C_in, F, H, W]
|
424 |
+
t (Tensor):
|
425 |
+
Diffusion timesteps tensor of shape [B]
|
426 |
+
context (List[Tensor]):
|
427 |
+
List of text embeddings each with shape [L, C]
|
428 |
+
seq_len (`int`):
|
429 |
+
Maximum sequence length for positional encoding
|
430 |
+
y (List[Tensor], *optional*):
|
431 |
+
Conditional video inputs for image-to-video mode, same shape as x
|
432 |
+
|
433 |
+
Returns:
|
434 |
+
List[Tensor]:
|
435 |
+
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
436 |
+
"""
|
437 |
+
if self.model_type == 'i2v':
|
438 |
+
assert y is not None
|
439 |
+
# params
|
440 |
+
device = self.patch_embedding.weight.device
|
441 |
+
if self.freqs.device != device:
|
442 |
+
self.freqs = self.freqs.to(device)
|
443 |
+
|
444 |
+
if y is not None:
|
445 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
446 |
+
|
447 |
+
# embeddings
|
448 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
449 |
+
grid_sizes = torch.stack(
|
450 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
451 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
452 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
453 |
+
assert seq_lens.max() <= seq_len
|
454 |
+
x = torch.cat([
|
455 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
456 |
+
dim=1) for u in x
|
457 |
+
])
|
458 |
+
|
459 |
+
# time embeddings
|
460 |
+
if t.dim() == 1:
|
461 |
+
t = t.expand(t.size(0), seq_len)
|
462 |
+
with torch.amp.autocast('cuda', dtype=torch.float32):
|
463 |
+
bt = t.size(0)
|
464 |
+
t = t.flatten()
|
465 |
+
e = self.time_embedding(
|
466 |
+
sinusoidal_embedding_1d(self.freq_dim,
|
467 |
+
t).unflatten(0, (bt, seq_len)).float())
|
468 |
+
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
469 |
+
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
470 |
+
|
471 |
+
# context
|
472 |
+
context_lens = None
|
473 |
+
context = self.text_embedding(
|
474 |
+
torch.stack([
|
475 |
+
torch.cat(
|
476 |
+
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
477 |
+
for u in context
|
478 |
+
]))
|
479 |
+
|
480 |
+
# arguments
|
481 |
+
kwargs = dict(
|
482 |
+
e=e0,
|
483 |
+
seq_lens=seq_lens,
|
484 |
+
grid_sizes=grid_sizes,
|
485 |
+
freqs=self.freqs,
|
486 |
+
context=context,
|
487 |
+
context_lens=context_lens)
|
488 |
+
|
489 |
+
for block in self.blocks:
|
490 |
+
x = block(x, **kwargs)
|
491 |
+
|
492 |
+
# head
|
493 |
+
x = self.head(x, e)
|
494 |
+
|
495 |
+
# unpatchify
|
496 |
+
x = self.unpatchify(x, grid_sizes)
|
497 |
+
return [u.float() for u in x]
|
498 |
+
|
499 |
+
def unpatchify(self, x, grid_sizes):
|
500 |
+
r"""
|
501 |
+
Reconstruct video tensors from patch embeddings.
|
502 |
+
|
503 |
+
Args:
|
504 |
+
x (List[Tensor]):
|
505 |
+
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
506 |
+
grid_sizes (Tensor):
|
507 |
+
Original spatial-temporal grid dimensions before patching,
|
508 |
+
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
509 |
+
|
510 |
+
Returns:
|
511 |
+
List[Tensor]:
|
512 |
+
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
513 |
+
"""
|
514 |
+
|
515 |
+
c = self.out_dim
|
516 |
+
out = []
|
517 |
+
for u, v in zip(x, grid_sizes.tolist()):
|
518 |
+
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
|
519 |
+
u = torch.einsum('fhwpqrc->cfphqwr', u)
|
520 |
+
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
521 |
+
out.append(u)
|
522 |
+
return out
|
523 |
+
|
524 |
+
def init_weights(self):
|
525 |
+
r"""
|
526 |
+
Initialize model parameters using Xavier initialization.
|
527 |
+
"""
|
528 |
+
|
529 |
+
# basic init
|
530 |
+
for m in self.modules():
|
531 |
+
if isinstance(m, nn.Linear):
|
532 |
+
nn.init.xavier_uniform_(m.weight)
|
533 |
+
if m.bias is not None:
|
534 |
+
nn.init.zeros_(m.bias)
|
535 |
+
|
536 |
+
# init embeddings
|
537 |
+
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
|
538 |
+
for m in self.text_embedding.modules():
|
539 |
+
if isinstance(m, nn.Linear):
|
540 |
+
nn.init.normal_(m.weight, std=.02)
|
541 |
+
for m in self.time_embedding.modules():
|
542 |
+
if isinstance(m, nn.Linear):
|
543 |
+
nn.init.normal_(m.weight, std=.02)
|
544 |
+
|
545 |
+
# init output layer
|
546 |
+
nn.init.zeros_(self.head.head.weight)
|
wan/modules/t5.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from transformers.models.t5.modeling_t5
|
2 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from .tokenizers import HuggingfaceTokenizer
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'T5Model',
|
14 |
+
'T5Encoder',
|
15 |
+
'T5Decoder',
|
16 |
+
'T5EncoderModel',
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def fp16_clamp(x):
|
21 |
+
if x.dtype == torch.float16 and torch.isinf(x).any():
|
22 |
+
clamp = torch.finfo(x.dtype).max - 1000
|
23 |
+
x = torch.clamp(x, min=-clamp, max=clamp)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
def init_weights(m):
|
28 |
+
if isinstance(m, T5LayerNorm):
|
29 |
+
nn.init.ones_(m.weight)
|
30 |
+
elif isinstance(m, T5Model):
|
31 |
+
nn.init.normal_(m.token_embedding.weight, std=1.0)
|
32 |
+
elif isinstance(m, T5FeedForward):
|
33 |
+
nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
|
34 |
+
nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
|
35 |
+
nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
|
36 |
+
elif isinstance(m, T5Attention):
|
37 |
+
nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5)
|
38 |
+
nn.init.normal_(m.k.weight, std=m.dim**-0.5)
|
39 |
+
nn.init.normal_(m.v.weight, std=m.dim**-0.5)
|
40 |
+
nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5)
|
41 |
+
elif isinstance(m, T5RelativeEmbedding):
|
42 |
+
nn.init.normal_(
|
43 |
+
m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5)
|
44 |
+
|
45 |
+
|
46 |
+
class GELU(nn.Module):
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
return 0.5 * x * (1.0 + torch.tanh(
|
50 |
+
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
51 |
+
|
52 |
+
|
53 |
+
class T5LayerNorm(nn.Module):
|
54 |
+
|
55 |
+
def __init__(self, dim, eps=1e-6):
|
56 |
+
super(T5LayerNorm, self).__init__()
|
57 |
+
self.dim = dim
|
58 |
+
self.eps = eps
|
59 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
|
63 |
+
self.eps)
|
64 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
65 |
+
x = x.type_as(self.weight)
|
66 |
+
return self.weight * x
|
67 |
+
|
68 |
+
|
69 |
+
class T5Attention(nn.Module):
|
70 |
+
|
71 |
+
def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
|
72 |
+
assert dim_attn % num_heads == 0
|
73 |
+
super(T5Attention, self).__init__()
|
74 |
+
self.dim = dim
|
75 |
+
self.dim_attn = dim_attn
|
76 |
+
self.num_heads = num_heads
|
77 |
+
self.head_dim = dim_attn // num_heads
|
78 |
+
|
79 |
+
# layers
|
80 |
+
self.q = nn.Linear(dim, dim_attn, bias=False)
|
81 |
+
self.k = nn.Linear(dim, dim_attn, bias=False)
|
82 |
+
self.v = nn.Linear(dim, dim_attn, bias=False)
|
83 |
+
self.o = nn.Linear(dim_attn, dim, bias=False)
|
84 |
+
self.dropout = nn.Dropout(dropout)
|
85 |
+
|
86 |
+
def forward(self, x, context=None, mask=None, pos_bias=None):
|
87 |
+
"""
|
88 |
+
x: [B, L1, C].
|
89 |
+
context: [B, L2, C] or None.
|
90 |
+
mask: [B, L2] or [B, L1, L2] or None.
|
91 |
+
"""
|
92 |
+
# check inputs
|
93 |
+
context = x if context is None else context
|
94 |
+
b, n, c = x.size(0), self.num_heads, self.head_dim
|
95 |
+
|
96 |
+
# compute query, key, value
|
97 |
+
q = self.q(x).view(b, -1, n, c)
|
98 |
+
k = self.k(context).view(b, -1, n, c)
|
99 |
+
v = self.v(context).view(b, -1, n, c)
|
100 |
+
|
101 |
+
# attention bias
|
102 |
+
attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
|
103 |
+
if pos_bias is not None:
|
104 |
+
attn_bias += pos_bias
|
105 |
+
if mask is not None:
|
106 |
+
assert mask.ndim in [2, 3]
|
107 |
+
mask = mask.view(b, 1, 1,
|
108 |
+
-1) if mask.ndim == 2 else mask.unsqueeze(1)
|
109 |
+
attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)
|
110 |
+
|
111 |
+
# compute attention (T5 does not use scaling)
|
112 |
+
attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
|
113 |
+
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
|
114 |
+
x = torch.einsum('bnij,bjnc->binc', attn, v)
|
115 |
+
|
116 |
+
# output
|
117 |
+
x = x.reshape(b, -1, n * c)
|
118 |
+
x = self.o(x)
|
119 |
+
x = self.dropout(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class T5FeedForward(nn.Module):
|
124 |
+
|
125 |
+
def __init__(self, dim, dim_ffn, dropout=0.1):
|
126 |
+
super(T5FeedForward, self).__init__()
|
127 |
+
self.dim = dim
|
128 |
+
self.dim_ffn = dim_ffn
|
129 |
+
|
130 |
+
# layers
|
131 |
+
self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
|
132 |
+
self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
|
133 |
+
self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
|
134 |
+
self.dropout = nn.Dropout(dropout)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
x = self.fc1(x) * self.gate(x)
|
138 |
+
x = self.dropout(x)
|
139 |
+
x = self.fc2(x)
|
140 |
+
x = self.dropout(x)
|
141 |
+
return x
|
142 |
+
|
143 |
+
|
144 |
+
class T5SelfAttention(nn.Module):
|
145 |
+
|
146 |
+
def __init__(self,
|
147 |
+
dim,
|
148 |
+
dim_attn,
|
149 |
+
dim_ffn,
|
150 |
+
num_heads,
|
151 |
+
num_buckets,
|
152 |
+
shared_pos=True,
|
153 |
+
dropout=0.1):
|
154 |
+
super(T5SelfAttention, self).__init__()
|
155 |
+
self.dim = dim
|
156 |
+
self.dim_attn = dim_attn
|
157 |
+
self.dim_ffn = dim_ffn
|
158 |
+
self.num_heads = num_heads
|
159 |
+
self.num_buckets = num_buckets
|
160 |
+
self.shared_pos = shared_pos
|
161 |
+
|
162 |
+
# layers
|
163 |
+
self.norm1 = T5LayerNorm(dim)
|
164 |
+
self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
165 |
+
self.norm2 = T5LayerNorm(dim)
|
166 |
+
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
|
167 |
+
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
|
168 |
+
num_buckets, num_heads, bidirectional=True)
|
169 |
+
|
170 |
+
def forward(self, x, mask=None, pos_bias=None):
|
171 |
+
e = pos_bias if self.shared_pos else self.pos_embedding(
|
172 |
+
x.size(1), x.size(1))
|
173 |
+
x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
|
174 |
+
x = fp16_clamp(x + self.ffn(self.norm2(x)))
|
175 |
+
return x
|
176 |
+
|
177 |
+
|
178 |
+
class T5CrossAttention(nn.Module):
|
179 |
+
|
180 |
+
def __init__(self,
|
181 |
+
dim,
|
182 |
+
dim_attn,
|
183 |
+
dim_ffn,
|
184 |
+
num_heads,
|
185 |
+
num_buckets,
|
186 |
+
shared_pos=True,
|
187 |
+
dropout=0.1):
|
188 |
+
super(T5CrossAttention, self).__init__()
|
189 |
+
self.dim = dim
|
190 |
+
self.dim_attn = dim_attn
|
191 |
+
self.dim_ffn = dim_ffn
|
192 |
+
self.num_heads = num_heads
|
193 |
+
self.num_buckets = num_buckets
|
194 |
+
self.shared_pos = shared_pos
|
195 |
+
|
196 |
+
# layers
|
197 |
+
self.norm1 = T5LayerNorm(dim)
|
198 |
+
self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
199 |
+
self.norm2 = T5LayerNorm(dim)
|
200 |
+
self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
201 |
+
self.norm3 = T5LayerNorm(dim)
|
202 |
+
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
|
203 |
+
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
|
204 |
+
num_buckets, num_heads, bidirectional=False)
|
205 |
+
|
206 |
+
def forward(self,
|
207 |
+
x,
|
208 |
+
mask=None,
|
209 |
+
encoder_states=None,
|
210 |
+
encoder_mask=None,
|
211 |
+
pos_bias=None):
|
212 |
+
e = pos_bias if self.shared_pos else self.pos_embedding(
|
213 |
+
x.size(1), x.size(1))
|
214 |
+
x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
|
215 |
+
x = fp16_clamp(x + self.cross_attn(
|
216 |
+
self.norm2(x), context=encoder_states, mask=encoder_mask))
|
217 |
+
x = fp16_clamp(x + self.ffn(self.norm3(x)))
|
218 |
+
return x
|
219 |
+
|
220 |
+
|
221 |
+
class T5RelativeEmbedding(nn.Module):
|
222 |
+
|
223 |
+
def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
|
224 |
+
super(T5RelativeEmbedding, self).__init__()
|
225 |
+
self.num_buckets = num_buckets
|
226 |
+
self.num_heads = num_heads
|
227 |
+
self.bidirectional = bidirectional
|
228 |
+
self.max_dist = max_dist
|
229 |
+
|
230 |
+
# layers
|
231 |
+
self.embedding = nn.Embedding(num_buckets, num_heads)
|
232 |
+
|
233 |
+
def forward(self, lq, lk):
|
234 |
+
device = self.embedding.weight.device
|
235 |
+
# rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
|
236 |
+
# torch.arange(lq).unsqueeze(1).to(device)
|
237 |
+
rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \
|
238 |
+
torch.arange(lq, device=device).unsqueeze(1)
|
239 |
+
rel_pos = self._relative_position_bucket(rel_pos)
|
240 |
+
rel_pos_embeds = self.embedding(rel_pos)
|
241 |
+
rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(
|
242 |
+
0) # [1, N, Lq, Lk]
|
243 |
+
return rel_pos_embeds.contiguous()
|
244 |
+
|
245 |
+
def _relative_position_bucket(self, rel_pos):
|
246 |
+
# preprocess
|
247 |
+
if self.bidirectional:
|
248 |
+
num_buckets = self.num_buckets // 2
|
249 |
+
rel_buckets = (rel_pos > 0).long() * num_buckets
|
250 |
+
rel_pos = torch.abs(rel_pos)
|
251 |
+
else:
|
252 |
+
num_buckets = self.num_buckets
|
253 |
+
rel_buckets = 0
|
254 |
+
rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))
|
255 |
+
|
256 |
+
# embeddings for small and large positions
|
257 |
+
max_exact = num_buckets // 2
|
258 |
+
rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
|
259 |
+
math.log(self.max_dist / max_exact) *
|
260 |
+
(num_buckets - max_exact)).long()
|
261 |
+
rel_pos_large = torch.min(
|
262 |
+
rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
|
263 |
+
rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
|
264 |
+
return rel_buckets
|
265 |
+
|
266 |
+
|
267 |
+
class T5Encoder(nn.Module):
|
268 |
+
|
269 |
+
def __init__(self,
|
270 |
+
vocab,
|
271 |
+
dim,
|
272 |
+
dim_attn,
|
273 |
+
dim_ffn,
|
274 |
+
num_heads,
|
275 |
+
num_layers,
|
276 |
+
num_buckets,
|
277 |
+
shared_pos=True,
|
278 |
+
dropout=0.1):
|
279 |
+
super(T5Encoder, self).__init__()
|
280 |
+
self.dim = dim
|
281 |
+
self.dim_attn = dim_attn
|
282 |
+
self.dim_ffn = dim_ffn
|
283 |
+
self.num_heads = num_heads
|
284 |
+
self.num_layers = num_layers
|
285 |
+
self.num_buckets = num_buckets
|
286 |
+
self.shared_pos = shared_pos
|
287 |
+
|
288 |
+
# layers
|
289 |
+
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
|
290 |
+
else nn.Embedding(vocab, dim)
|
291 |
+
self.pos_embedding = T5RelativeEmbedding(
|
292 |
+
num_buckets, num_heads, bidirectional=True) if shared_pos else None
|
293 |
+
self.dropout = nn.Dropout(dropout)
|
294 |
+
self.blocks = nn.ModuleList([
|
295 |
+
T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
|
296 |
+
shared_pos, dropout) for _ in range(num_layers)
|
297 |
+
])
|
298 |
+
self.norm = T5LayerNorm(dim)
|
299 |
+
|
300 |
+
# initialize weights
|
301 |
+
self.apply(init_weights)
|
302 |
+
|
303 |
+
def forward(self, ids, mask=None):
|
304 |
+
x = self.token_embedding(ids)
|
305 |
+
x = self.dropout(x)
|
306 |
+
e = self.pos_embedding(x.size(1),
|
307 |
+
x.size(1)) if self.shared_pos else None
|
308 |
+
for block in self.blocks:
|
309 |
+
x = block(x, mask, pos_bias=e)
|
310 |
+
x = self.norm(x)
|
311 |
+
x = self.dropout(x)
|
312 |
+
return x
|
313 |
+
|
314 |
+
|
315 |
+
class T5Decoder(nn.Module):
|
316 |
+
|
317 |
+
def __init__(self,
|
318 |
+
vocab,
|
319 |
+
dim,
|
320 |
+
dim_attn,
|
321 |
+
dim_ffn,
|
322 |
+
num_heads,
|
323 |
+
num_layers,
|
324 |
+
num_buckets,
|
325 |
+
shared_pos=True,
|
326 |
+
dropout=0.1):
|
327 |
+
super(T5Decoder, self).__init__()
|
328 |
+
self.dim = dim
|
329 |
+
self.dim_attn = dim_attn
|
330 |
+
self.dim_ffn = dim_ffn
|
331 |
+
self.num_heads = num_heads
|
332 |
+
self.num_layers = num_layers
|
333 |
+
self.num_buckets = num_buckets
|
334 |
+
self.shared_pos = shared_pos
|
335 |
+
|
336 |
+
# layers
|
337 |
+
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
|
338 |
+
else nn.Embedding(vocab, dim)
|
339 |
+
self.pos_embedding = T5RelativeEmbedding(
|
340 |
+
num_buckets, num_heads, bidirectional=False) if shared_pos else None
|
341 |
+
self.dropout = nn.Dropout(dropout)
|
342 |
+
self.blocks = nn.ModuleList([
|
343 |
+
T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
|
344 |
+
shared_pos, dropout) for _ in range(num_layers)
|
345 |
+
])
|
346 |
+
self.norm = T5LayerNorm(dim)
|
347 |
+
|
348 |
+
# initialize weights
|
349 |
+
self.apply(init_weights)
|
350 |
+
|
351 |
+
def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
|
352 |
+
b, s = ids.size()
|
353 |
+
|
354 |
+
# causal mask
|
355 |
+
if mask is None:
|
356 |
+
mask = torch.tril(torch.ones(1, s, s).to(ids.device))
|
357 |
+
elif mask.ndim == 2:
|
358 |
+
mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))
|
359 |
+
|
360 |
+
# layers
|
361 |
+
x = self.token_embedding(ids)
|
362 |
+
x = self.dropout(x)
|
363 |
+
e = self.pos_embedding(x.size(1),
|
364 |
+
x.size(1)) if self.shared_pos else None
|
365 |
+
for block in self.blocks:
|
366 |
+
x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
|
367 |
+
x = self.norm(x)
|
368 |
+
x = self.dropout(x)
|
369 |
+
return x
|
370 |
+
|
371 |
+
|
372 |
+
class T5Model(nn.Module):
|
373 |
+
|
374 |
+
def __init__(self,
|
375 |
+
vocab_size,
|
376 |
+
dim,
|
377 |
+
dim_attn,
|
378 |
+
dim_ffn,
|
379 |
+
num_heads,
|
380 |
+
encoder_layers,
|
381 |
+
decoder_layers,
|
382 |
+
num_buckets,
|
383 |
+
shared_pos=True,
|
384 |
+
dropout=0.1):
|
385 |
+
super(T5Model, self).__init__()
|
386 |
+
self.vocab_size = vocab_size
|
387 |
+
self.dim = dim
|
388 |
+
self.dim_attn = dim_attn
|
389 |
+
self.dim_ffn = dim_ffn
|
390 |
+
self.num_heads = num_heads
|
391 |
+
self.encoder_layers = encoder_layers
|
392 |
+
self.decoder_layers = decoder_layers
|
393 |
+
self.num_buckets = num_buckets
|
394 |
+
|
395 |
+
# layers
|
396 |
+
self.token_embedding = nn.Embedding(vocab_size, dim)
|
397 |
+
self.encoder = T5Encoder(self.token_embedding, dim, dim_attn, dim_ffn,
|
398 |
+
num_heads, encoder_layers, num_buckets,
|
399 |
+
shared_pos, dropout)
|
400 |
+
self.decoder = T5Decoder(self.token_embedding, dim, dim_attn, dim_ffn,
|
401 |
+
num_heads, decoder_layers, num_buckets,
|
402 |
+
shared_pos, dropout)
|
403 |
+
self.head = nn.Linear(dim, vocab_size, bias=False)
|
404 |
+
|
405 |
+
# initialize weights
|
406 |
+
self.apply(init_weights)
|
407 |
+
|
408 |
+
def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
|
409 |
+
x = self.encoder(encoder_ids, encoder_mask)
|
410 |
+
x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
|
411 |
+
x = self.head(x)
|
412 |
+
return x
|
413 |
+
|
414 |
+
|
415 |
+
def _t5(name,
|
416 |
+
encoder_only=False,
|
417 |
+
decoder_only=False,
|
418 |
+
return_tokenizer=False,
|
419 |
+
tokenizer_kwargs={},
|
420 |
+
dtype=torch.float32,
|
421 |
+
device='cpu',
|
422 |
+
**kwargs):
|
423 |
+
# sanity check
|
424 |
+
assert not (encoder_only and decoder_only)
|
425 |
+
|
426 |
+
# params
|
427 |
+
if encoder_only:
|
428 |
+
model_cls = T5Encoder
|
429 |
+
kwargs['vocab'] = kwargs.pop('vocab_size')
|
430 |
+
kwargs['num_layers'] = kwargs.pop('encoder_layers')
|
431 |
+
_ = kwargs.pop('decoder_layers')
|
432 |
+
elif decoder_only:
|
433 |
+
model_cls = T5Decoder
|
434 |
+
kwargs['vocab'] = kwargs.pop('vocab_size')
|
435 |
+
kwargs['num_layers'] = kwargs.pop('decoder_layers')
|
436 |
+
_ = kwargs.pop('encoder_layers')
|
437 |
+
else:
|
438 |
+
model_cls = T5Model
|
439 |
+
|
440 |
+
# init model
|
441 |
+
with torch.device(device):
|
442 |
+
model = model_cls(**kwargs)
|
443 |
+
|
444 |
+
# set device
|
445 |
+
model = model.to(dtype=dtype, device=device)
|
446 |
+
|
447 |
+
# init tokenizer
|
448 |
+
if return_tokenizer:
|
449 |
+
from .tokenizers import HuggingfaceTokenizer
|
450 |
+
tokenizer = HuggingfaceTokenizer(f'google/{name}', **tokenizer_kwargs)
|
451 |
+
return model, tokenizer
|
452 |
+
else:
|
453 |
+
return model
|
454 |
+
|
455 |
+
|
456 |
+
def umt5_xxl(**kwargs):
|
457 |
+
cfg = dict(
|
458 |
+
vocab_size=256384,
|
459 |
+
dim=4096,
|
460 |
+
dim_attn=4096,
|
461 |
+
dim_ffn=10240,
|
462 |
+
num_heads=64,
|
463 |
+
encoder_layers=24,
|
464 |
+
decoder_layers=24,
|
465 |
+
num_buckets=32,
|
466 |
+
shared_pos=False,
|
467 |
+
dropout=0.1)
|
468 |
+
cfg.update(**kwargs)
|
469 |
+
return _t5('umt5-xxl', **cfg)
|
470 |
+
|
471 |
+
|
472 |
+
class T5EncoderModel:
|
473 |
+
|
474 |
+
def __init__(
|
475 |
+
self,
|
476 |
+
text_len,
|
477 |
+
dtype=torch.bfloat16,
|
478 |
+
device=torch.cuda.current_device(),
|
479 |
+
checkpoint_path=None,
|
480 |
+
tokenizer_path=None,
|
481 |
+
shard_fn=None,
|
482 |
+
):
|
483 |
+
self.text_len = text_len
|
484 |
+
self.dtype = dtype
|
485 |
+
self.device = device
|
486 |
+
self.checkpoint_path = checkpoint_path
|
487 |
+
self.tokenizer_path = tokenizer_path
|
488 |
+
|
489 |
+
# init model
|
490 |
+
model = umt5_xxl(
|
491 |
+
encoder_only=True,
|
492 |
+
return_tokenizer=False,
|
493 |
+
dtype=dtype,
|
494 |
+
device=device).eval().requires_grad_(False)
|
495 |
+
logging.info(f'loading {checkpoint_path}')
|
496 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))
|
497 |
+
self.model = model
|
498 |
+
if shard_fn is not None:
|
499 |
+
self.model = shard_fn(self.model, sync_module_states=False)
|
500 |
+
else:
|
501 |
+
self.model.to(self.device)
|
502 |
+
# init tokenizer
|
503 |
+
self.tokenizer = HuggingfaceTokenizer(
|
504 |
+
name=tokenizer_path, seq_len=text_len, clean='whitespace')
|
505 |
+
|
506 |
+
def __call__(self, texts, device):
|
507 |
+
ids, mask = self.tokenizer(
|
508 |
+
texts, return_mask=True, add_special_tokens=True)
|
509 |
+
ids = ids.to(device)
|
510 |
+
mask = mask.to(device)
|
511 |
+
seq_lens = mask.gt(0).sum(dim=1).long()
|
512 |
+
context = self.model(ids, mask)
|
513 |
+
return [u[:v] for u, v in zip(context, seq_lens)]
|
wan/modules/tokenizers.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import html
|
3 |
+
import string
|
4 |
+
|
5 |
+
import ftfy
|
6 |
+
import regex as re
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
|
9 |
+
__all__ = ['HuggingfaceTokenizer']
|
10 |
+
|
11 |
+
|
12 |
+
def basic_clean(text):
|
13 |
+
text = ftfy.fix_text(text)
|
14 |
+
text = html.unescape(html.unescape(text))
|
15 |
+
return text.strip()
|
16 |
+
|
17 |
+
|
18 |
+
def whitespace_clean(text):
|
19 |
+
text = re.sub(r'\s+', ' ', text)
|
20 |
+
text = text.strip()
|
21 |
+
return text
|
22 |
+
|
23 |
+
|
24 |
+
def canonicalize(text, keep_punctuation_exact_string=None):
|
25 |
+
text = text.replace('_', ' ')
|
26 |
+
if keep_punctuation_exact_string:
|
27 |
+
text = keep_punctuation_exact_string.join(
|
28 |
+
part.translate(str.maketrans('', '', string.punctuation))
|
29 |
+
for part in text.split(keep_punctuation_exact_string))
|
30 |
+
else:
|
31 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
32 |
+
text = text.lower()
|
33 |
+
text = re.sub(r'\s+', ' ', text)
|
34 |
+
return text.strip()
|
35 |
+
|
36 |
+
|
37 |
+
class HuggingfaceTokenizer:
|
38 |
+
|
39 |
+
def __init__(self, name, seq_len=None, clean=None, **kwargs):
|
40 |
+
assert clean in (None, 'whitespace', 'lower', 'canonicalize')
|
41 |
+
self.name = name
|
42 |
+
self.seq_len = seq_len
|
43 |
+
self.clean = clean
|
44 |
+
|
45 |
+
# init tokenizer
|
46 |
+
self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs)
|
47 |
+
self.vocab_size = self.tokenizer.vocab_size
|
48 |
+
|
49 |
+
def __call__(self, sequence, **kwargs):
|
50 |
+
return_mask = kwargs.pop('return_mask', False)
|
51 |
+
|
52 |
+
# arguments
|
53 |
+
_kwargs = {'return_tensors': 'pt'}
|
54 |
+
if self.seq_len is not None:
|
55 |
+
_kwargs.update({
|
56 |
+
'padding': 'max_length',
|
57 |
+
'truncation': True,
|
58 |
+
'max_length': self.seq_len
|
59 |
+
})
|
60 |
+
_kwargs.update(**kwargs)
|
61 |
+
|
62 |
+
# tokenization
|
63 |
+
if isinstance(sequence, str):
|
64 |
+
sequence = [sequence]
|
65 |
+
if self.clean:
|
66 |
+
sequence = [self._clean(u) for u in sequence]
|
67 |
+
ids = self.tokenizer(sequence, **_kwargs)
|
68 |
+
|
69 |
+
# output
|
70 |
+
if return_mask:
|
71 |
+
return ids.input_ids, ids.attention_mask
|
72 |
+
else:
|
73 |
+
return ids.input_ids
|
74 |
+
|
75 |
+
def _clean(self, text):
|
76 |
+
if self.clean == 'whitespace':
|
77 |
+
text = whitespace_clean(basic_clean(text))
|
78 |
+
elif self.clean == 'lower':
|
79 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
80 |
+
elif self.clean == 'canonicalize':
|
81 |
+
text = canonicalize(basic_clean(text))
|
82 |
+
return text
|
wan/modules/vae2_1.py
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.cuda.amp as amp
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
'Wan2_1_VAE',
|
12 |
+
]
|
13 |
+
|
14 |
+
CACHE_T = 2
|
15 |
+
|
16 |
+
|
17 |
+
class CausalConv3d(nn.Conv3d):
|
18 |
+
"""
|
19 |
+
Causal 3d convolusion.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, *args, **kwargs):
|
23 |
+
super().__init__(*args, **kwargs)
|
24 |
+
self._padding = (self.padding[2], self.padding[2], self.padding[1],
|
25 |
+
self.padding[1], 2 * self.padding[0], 0)
|
26 |
+
self.padding = (0, 0, 0)
|
27 |
+
|
28 |
+
def forward(self, x, cache_x=None):
|
29 |
+
padding = list(self._padding)
|
30 |
+
if cache_x is not None and self._padding[4] > 0:
|
31 |
+
cache_x = cache_x.to(x.device)
|
32 |
+
x = torch.cat([cache_x, x], dim=2)
|
33 |
+
padding[4] -= cache_x.shape[2]
|
34 |
+
x = F.pad(x, padding)
|
35 |
+
|
36 |
+
return super().forward(x)
|
37 |
+
|
38 |
+
|
39 |
+
class RMS_norm(nn.Module):
|
40 |
+
|
41 |
+
def __init__(self, dim, channel_first=True, images=True, bias=False):
|
42 |
+
super().__init__()
|
43 |
+
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
44 |
+
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
45 |
+
|
46 |
+
self.channel_first = channel_first
|
47 |
+
self.scale = dim**0.5
|
48 |
+
self.gamma = nn.Parameter(torch.ones(shape))
|
49 |
+
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
return F.normalize(
|
53 |
+
x, dim=(1 if self.channel_first else
|
54 |
+
-1)) * self.scale * self.gamma + self.bias
|
55 |
+
|
56 |
+
|
57 |
+
class Upsample(nn.Upsample):
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
"""
|
61 |
+
Fix bfloat16 support for nearest neighbor interpolation.
|
62 |
+
"""
|
63 |
+
return super().forward(x.float()).type_as(x)
|
64 |
+
|
65 |
+
|
66 |
+
class Resample(nn.Module):
|
67 |
+
|
68 |
+
def __init__(self, dim, mode):
|
69 |
+
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
|
70 |
+
'downsample3d')
|
71 |
+
super().__init__()
|
72 |
+
self.dim = dim
|
73 |
+
self.mode = mode
|
74 |
+
|
75 |
+
# layers
|
76 |
+
if mode == 'upsample2d':
|
77 |
+
self.resample = nn.Sequential(
|
78 |
+
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
79 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
80 |
+
elif mode == 'upsample3d':
|
81 |
+
self.resample = nn.Sequential(
|
82 |
+
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
83 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1))
|
84 |
+
self.time_conv = CausalConv3d(
|
85 |
+
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
86 |
+
|
87 |
+
elif mode == 'downsample2d':
|
88 |
+
self.resample = nn.Sequential(
|
89 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
90 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
91 |
+
elif mode == 'downsample3d':
|
92 |
+
self.resample = nn.Sequential(
|
93 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
94 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
95 |
+
self.time_conv = CausalConv3d(
|
96 |
+
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
97 |
+
|
98 |
+
else:
|
99 |
+
self.resample = nn.Identity()
|
100 |
+
|
101 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
102 |
+
b, c, t, h, w = x.size()
|
103 |
+
if self.mode == 'upsample3d':
|
104 |
+
if feat_cache is not None:
|
105 |
+
idx = feat_idx[0]
|
106 |
+
if feat_cache[idx] is None:
|
107 |
+
feat_cache[idx] = 'Rep'
|
108 |
+
feat_idx[0] += 1
|
109 |
+
else:
|
110 |
+
|
111 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
112 |
+
if cache_x.shape[2] < 2 and feat_cache[
|
113 |
+
idx] is not None and feat_cache[idx] != 'Rep':
|
114 |
+
# cache last frame of last two chunk
|
115 |
+
cache_x = torch.cat([
|
116 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
117 |
+
cache_x.device), cache_x
|
118 |
+
],
|
119 |
+
dim=2)
|
120 |
+
if cache_x.shape[2] < 2 and feat_cache[
|
121 |
+
idx] is not None and feat_cache[idx] == 'Rep':
|
122 |
+
cache_x = torch.cat([
|
123 |
+
torch.zeros_like(cache_x).to(cache_x.device),
|
124 |
+
cache_x
|
125 |
+
],
|
126 |
+
dim=2)
|
127 |
+
if feat_cache[idx] == 'Rep':
|
128 |
+
x = self.time_conv(x)
|
129 |
+
else:
|
130 |
+
x = self.time_conv(x, feat_cache[idx])
|
131 |
+
feat_cache[idx] = cache_x
|
132 |
+
feat_idx[0] += 1
|
133 |
+
|
134 |
+
x = x.reshape(b, 2, c, t, h, w)
|
135 |
+
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
|
136 |
+
3)
|
137 |
+
x = x.reshape(b, c, t * 2, h, w)
|
138 |
+
t = x.shape[2]
|
139 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
140 |
+
x = self.resample(x)
|
141 |
+
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
|
142 |
+
|
143 |
+
if self.mode == 'downsample3d':
|
144 |
+
if feat_cache is not None:
|
145 |
+
idx = feat_idx[0]
|
146 |
+
if feat_cache[idx] is None:
|
147 |
+
feat_cache[idx] = x.clone()
|
148 |
+
feat_idx[0] += 1
|
149 |
+
else:
|
150 |
+
|
151 |
+
cache_x = x[:, :, -1:, :, :].clone()
|
152 |
+
# if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
|
153 |
+
# # cache last frame of last two chunk
|
154 |
+
# cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
155 |
+
|
156 |
+
x = self.time_conv(
|
157 |
+
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
158 |
+
feat_cache[idx] = cache_x
|
159 |
+
feat_idx[0] += 1
|
160 |
+
return x
|
161 |
+
|
162 |
+
def init_weight(self, conv):
|
163 |
+
conv_weight = conv.weight
|
164 |
+
nn.init.zeros_(conv_weight)
|
165 |
+
c1, c2, t, h, w = conv_weight.size()
|
166 |
+
one_matrix = torch.eye(c1, c2)
|
167 |
+
init_matrix = one_matrix
|
168 |
+
nn.init.zeros_(conv_weight)
|
169 |
+
#conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
|
170 |
+
conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5
|
171 |
+
conv.weight.data.copy_(conv_weight)
|
172 |
+
nn.init.zeros_(conv.bias.data)
|
173 |
+
|
174 |
+
def init_weight2(self, conv):
|
175 |
+
conv_weight = conv.weight.data
|
176 |
+
nn.init.zeros_(conv_weight)
|
177 |
+
c1, c2, t, h, w = conv_weight.size()
|
178 |
+
init_matrix = torch.eye(c1 // 2, c2)
|
179 |
+
#init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
|
180 |
+
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
181 |
+
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
182 |
+
conv.weight.data.copy_(conv_weight)
|
183 |
+
nn.init.zeros_(conv.bias.data)
|
184 |
+
|
185 |
+
|
186 |
+
class ResidualBlock(nn.Module):
|
187 |
+
|
188 |
+
def __init__(self, in_dim, out_dim, dropout=0.0):
|
189 |
+
super().__init__()
|
190 |
+
self.in_dim = in_dim
|
191 |
+
self.out_dim = out_dim
|
192 |
+
|
193 |
+
# layers
|
194 |
+
self.residual = nn.Sequential(
|
195 |
+
RMS_norm(in_dim, images=False), nn.SiLU(),
|
196 |
+
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
197 |
+
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
|
198 |
+
CausalConv3d(out_dim, out_dim, 3, padding=1))
|
199 |
+
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
|
200 |
+
if in_dim != out_dim else nn.Identity()
|
201 |
+
|
202 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
203 |
+
h = self.shortcut(x)
|
204 |
+
for layer in self.residual:
|
205 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
206 |
+
idx = feat_idx[0]
|
207 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
208 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
209 |
+
# cache last frame of last two chunk
|
210 |
+
cache_x = torch.cat([
|
211 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
212 |
+
cache_x.device), cache_x
|
213 |
+
],
|
214 |
+
dim=2)
|
215 |
+
x = layer(x, feat_cache[idx])
|
216 |
+
feat_cache[idx] = cache_x
|
217 |
+
feat_idx[0] += 1
|
218 |
+
else:
|
219 |
+
x = layer(x)
|
220 |
+
return x + h
|
221 |
+
|
222 |
+
|
223 |
+
class AttentionBlock(nn.Module):
|
224 |
+
"""
|
225 |
+
Causal self-attention with a single head.
|
226 |
+
"""
|
227 |
+
|
228 |
+
def __init__(self, dim):
|
229 |
+
super().__init__()
|
230 |
+
self.dim = dim
|
231 |
+
|
232 |
+
# layers
|
233 |
+
self.norm = RMS_norm(dim)
|
234 |
+
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
235 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
236 |
+
|
237 |
+
# zero out the last layer params
|
238 |
+
nn.init.zeros_(self.proj.weight)
|
239 |
+
|
240 |
+
def forward(self, x):
|
241 |
+
identity = x
|
242 |
+
b, c, t, h, w = x.size()
|
243 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
244 |
+
x = self.norm(x)
|
245 |
+
# compute query, key, value
|
246 |
+
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3,
|
247 |
+
-1).permute(0, 1, 3,
|
248 |
+
2).contiguous().chunk(
|
249 |
+
3, dim=-1)
|
250 |
+
|
251 |
+
# apply attention
|
252 |
+
x = F.scaled_dot_product_attention(
|
253 |
+
q,
|
254 |
+
k,
|
255 |
+
v,
|
256 |
+
)
|
257 |
+
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
|
258 |
+
|
259 |
+
# output
|
260 |
+
x = self.proj(x)
|
261 |
+
x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
|
262 |
+
return x + identity
|
263 |
+
|
264 |
+
|
265 |
+
class Encoder3d(nn.Module):
|
266 |
+
|
267 |
+
def __init__(self,
|
268 |
+
dim=128,
|
269 |
+
z_dim=4,
|
270 |
+
dim_mult=[1, 2, 4, 4],
|
271 |
+
num_res_blocks=2,
|
272 |
+
attn_scales=[],
|
273 |
+
temperal_downsample=[True, True, False],
|
274 |
+
dropout=0.0):
|
275 |
+
super().__init__()
|
276 |
+
self.dim = dim
|
277 |
+
self.z_dim = z_dim
|
278 |
+
self.dim_mult = dim_mult
|
279 |
+
self.num_res_blocks = num_res_blocks
|
280 |
+
self.attn_scales = attn_scales
|
281 |
+
self.temperal_downsample = temperal_downsample
|
282 |
+
|
283 |
+
# dimensions
|
284 |
+
dims = [dim * u for u in [1] + dim_mult]
|
285 |
+
scale = 1.0
|
286 |
+
|
287 |
+
# init block
|
288 |
+
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
|
289 |
+
|
290 |
+
# downsample blocks
|
291 |
+
downsamples = []
|
292 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
293 |
+
# residual (+attention) blocks
|
294 |
+
for _ in range(num_res_blocks):
|
295 |
+
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
296 |
+
if scale in attn_scales:
|
297 |
+
downsamples.append(AttentionBlock(out_dim))
|
298 |
+
in_dim = out_dim
|
299 |
+
|
300 |
+
# downsample block
|
301 |
+
if i != len(dim_mult) - 1:
|
302 |
+
mode = 'downsample3d' if temperal_downsample[
|
303 |
+
i] else 'downsample2d'
|
304 |
+
downsamples.append(Resample(out_dim, mode=mode))
|
305 |
+
scale /= 2.0
|
306 |
+
self.downsamples = nn.Sequential(*downsamples)
|
307 |
+
|
308 |
+
# middle blocks
|
309 |
+
self.middle = nn.Sequential(
|
310 |
+
ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
|
311 |
+
ResidualBlock(out_dim, out_dim, dropout))
|
312 |
+
|
313 |
+
# output blocks
|
314 |
+
self.head = nn.Sequential(
|
315 |
+
RMS_norm(out_dim, images=False), nn.SiLU(),
|
316 |
+
CausalConv3d(out_dim, z_dim, 3, padding=1))
|
317 |
+
|
318 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
319 |
+
if feat_cache is not None:
|
320 |
+
idx = feat_idx[0]
|
321 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
322 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
323 |
+
# cache last frame of last two chunk
|
324 |
+
cache_x = torch.cat([
|
325 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
326 |
+
cache_x.device), cache_x
|
327 |
+
],
|
328 |
+
dim=2)
|
329 |
+
x = self.conv1(x, feat_cache[idx])
|
330 |
+
feat_cache[idx] = cache_x
|
331 |
+
feat_idx[0] += 1
|
332 |
+
else:
|
333 |
+
x = self.conv1(x)
|
334 |
+
|
335 |
+
## downsamples
|
336 |
+
for layer in self.downsamples:
|
337 |
+
if feat_cache is not None:
|
338 |
+
x = layer(x, feat_cache, feat_idx)
|
339 |
+
else:
|
340 |
+
x = layer(x)
|
341 |
+
|
342 |
+
## middle
|
343 |
+
for layer in self.middle:
|
344 |
+
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
345 |
+
x = layer(x, feat_cache, feat_idx)
|
346 |
+
else:
|
347 |
+
x = layer(x)
|
348 |
+
|
349 |
+
## head
|
350 |
+
for layer in self.head:
|
351 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
352 |
+
idx = feat_idx[0]
|
353 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
354 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
355 |
+
# cache last frame of last two chunk
|
356 |
+
cache_x = torch.cat([
|
357 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
358 |
+
cache_x.device), cache_x
|
359 |
+
],
|
360 |
+
dim=2)
|
361 |
+
x = layer(x, feat_cache[idx])
|
362 |
+
feat_cache[idx] = cache_x
|
363 |
+
feat_idx[0] += 1
|
364 |
+
else:
|
365 |
+
x = layer(x)
|
366 |
+
return x
|
367 |
+
|
368 |
+
|
369 |
+
class Decoder3d(nn.Module):
|
370 |
+
|
371 |
+
def __init__(self,
|
372 |
+
dim=128,
|
373 |
+
z_dim=4,
|
374 |
+
dim_mult=[1, 2, 4, 4],
|
375 |
+
num_res_blocks=2,
|
376 |
+
attn_scales=[],
|
377 |
+
temperal_upsample=[False, True, True],
|
378 |
+
dropout=0.0):
|
379 |
+
super().__init__()
|
380 |
+
self.dim = dim
|
381 |
+
self.z_dim = z_dim
|
382 |
+
self.dim_mult = dim_mult
|
383 |
+
self.num_res_blocks = num_res_blocks
|
384 |
+
self.attn_scales = attn_scales
|
385 |
+
self.temperal_upsample = temperal_upsample
|
386 |
+
|
387 |
+
# dimensions
|
388 |
+
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
389 |
+
scale = 1.0 / 2**(len(dim_mult) - 2)
|
390 |
+
|
391 |
+
# init block
|
392 |
+
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
393 |
+
|
394 |
+
# middle blocks
|
395 |
+
self.middle = nn.Sequential(
|
396 |
+
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
|
397 |
+
ResidualBlock(dims[0], dims[0], dropout))
|
398 |
+
|
399 |
+
# upsample blocks
|
400 |
+
upsamples = []
|
401 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
402 |
+
# residual (+attention) blocks
|
403 |
+
if i == 1 or i == 2 or i == 3:
|
404 |
+
in_dim = in_dim // 2
|
405 |
+
for _ in range(num_res_blocks + 1):
|
406 |
+
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
407 |
+
if scale in attn_scales:
|
408 |
+
upsamples.append(AttentionBlock(out_dim))
|
409 |
+
in_dim = out_dim
|
410 |
+
|
411 |
+
# upsample block
|
412 |
+
if i != len(dim_mult) - 1:
|
413 |
+
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
|
414 |
+
upsamples.append(Resample(out_dim, mode=mode))
|
415 |
+
scale *= 2.0
|
416 |
+
self.upsamples = nn.Sequential(*upsamples)
|
417 |
+
|
418 |
+
# output blocks
|
419 |
+
self.head = nn.Sequential(
|
420 |
+
RMS_norm(out_dim, images=False), nn.SiLU(),
|
421 |
+
CausalConv3d(out_dim, 3, 3, padding=1))
|
422 |
+
|
423 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
424 |
+
## conv1
|
425 |
+
if feat_cache is not None:
|
426 |
+
idx = feat_idx[0]
|
427 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
428 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
429 |
+
# cache last frame of last two chunk
|
430 |
+
cache_x = torch.cat([
|
431 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
432 |
+
cache_x.device), cache_x
|
433 |
+
],
|
434 |
+
dim=2)
|
435 |
+
x = self.conv1(x, feat_cache[idx])
|
436 |
+
feat_cache[idx] = cache_x
|
437 |
+
feat_idx[0] += 1
|
438 |
+
else:
|
439 |
+
x = self.conv1(x)
|
440 |
+
|
441 |
+
## middle
|
442 |
+
for layer in self.middle:
|
443 |
+
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
444 |
+
x = layer(x, feat_cache, feat_idx)
|
445 |
+
else:
|
446 |
+
x = layer(x)
|
447 |
+
|
448 |
+
## upsamples
|
449 |
+
for layer in self.upsamples:
|
450 |
+
if feat_cache is not None:
|
451 |
+
x = layer(x, feat_cache, feat_idx)
|
452 |
+
else:
|
453 |
+
x = layer(x)
|
454 |
+
|
455 |
+
## head
|
456 |
+
for layer in self.head:
|
457 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
458 |
+
idx = feat_idx[0]
|
459 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
460 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
461 |
+
# cache last frame of last two chunk
|
462 |
+
cache_x = torch.cat([
|
463 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
464 |
+
cache_x.device), cache_x
|
465 |
+
],
|
466 |
+
dim=2)
|
467 |
+
x = layer(x, feat_cache[idx])
|
468 |
+
feat_cache[idx] = cache_x
|
469 |
+
feat_idx[0] += 1
|
470 |
+
else:
|
471 |
+
x = layer(x)
|
472 |
+
return x
|
473 |
+
|
474 |
+
|
475 |
+
def count_conv3d(model):
|
476 |
+
count = 0
|
477 |
+
for m in model.modules():
|
478 |
+
if isinstance(m, CausalConv3d):
|
479 |
+
count += 1
|
480 |
+
return count
|
481 |
+
|
482 |
+
|
483 |
+
class WanVAE_(nn.Module):
|
484 |
+
|
485 |
+
def __init__(self,
|
486 |
+
dim=128,
|
487 |
+
z_dim=4,
|
488 |
+
dim_mult=[1, 2, 4, 4],
|
489 |
+
num_res_blocks=2,
|
490 |
+
attn_scales=[],
|
491 |
+
temperal_downsample=[True, True, False],
|
492 |
+
dropout=0.0):
|
493 |
+
super().__init__()
|
494 |
+
self.dim = dim
|
495 |
+
self.z_dim = z_dim
|
496 |
+
self.dim_mult = dim_mult
|
497 |
+
self.num_res_blocks = num_res_blocks
|
498 |
+
self.attn_scales = attn_scales
|
499 |
+
self.temperal_downsample = temperal_downsample
|
500 |
+
self.temperal_upsample = temperal_downsample[::-1]
|
501 |
+
|
502 |
+
# modules
|
503 |
+
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
|
504 |
+
attn_scales, self.temperal_downsample, dropout)
|
505 |
+
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
506 |
+
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
507 |
+
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
|
508 |
+
attn_scales, self.temperal_upsample, dropout)
|
509 |
+
|
510 |
+
def forward(self, x):
|
511 |
+
mu, log_var = self.encode(x)
|
512 |
+
z = self.reparameterize(mu, log_var)
|
513 |
+
x_recon = self.decode(z)
|
514 |
+
return x_recon, mu, log_var
|
515 |
+
|
516 |
+
def encode(self, x, scale):
|
517 |
+
self.clear_cache()
|
518 |
+
## cache
|
519 |
+
t = x.shape[2]
|
520 |
+
iter_ = 1 + (t - 1) // 4
|
521 |
+
## 对encode输入的x,按时间拆分为1、4、4、4....
|
522 |
+
for i in range(iter_):
|
523 |
+
self._enc_conv_idx = [0]
|
524 |
+
if i == 0:
|
525 |
+
out = self.encoder(
|
526 |
+
x[:, :, :1, :, :],
|
527 |
+
feat_cache=self._enc_feat_map,
|
528 |
+
feat_idx=self._enc_conv_idx)
|
529 |
+
else:
|
530 |
+
out_ = self.encoder(
|
531 |
+
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
532 |
+
feat_cache=self._enc_feat_map,
|
533 |
+
feat_idx=self._enc_conv_idx)
|
534 |
+
out = torch.cat([out, out_], 2)
|
535 |
+
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
536 |
+
if isinstance(scale[0], torch.Tensor):
|
537 |
+
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
|
538 |
+
1, self.z_dim, 1, 1, 1)
|
539 |
+
else:
|
540 |
+
mu = (mu - scale[0]) * scale[1]
|
541 |
+
self.clear_cache()
|
542 |
+
return mu
|
543 |
+
|
544 |
+
def decode(self, z, scale):
|
545 |
+
self.clear_cache()
|
546 |
+
# z: [b,c,t,h,w]
|
547 |
+
if isinstance(scale[0], torch.Tensor):
|
548 |
+
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
|
549 |
+
1, self.z_dim, 1, 1, 1)
|
550 |
+
else:
|
551 |
+
z = z / scale[1] + scale[0]
|
552 |
+
iter_ = z.shape[2]
|
553 |
+
x = self.conv2(z)
|
554 |
+
for i in range(iter_):
|
555 |
+
self._conv_idx = [0]
|
556 |
+
if i == 0:
|
557 |
+
out = self.decoder(
|
558 |
+
x[:, :, i:i + 1, :, :],
|
559 |
+
feat_cache=self._feat_map,
|
560 |
+
feat_idx=self._conv_idx)
|
561 |
+
else:
|
562 |
+
out_ = self.decoder(
|
563 |
+
x[:, :, i:i + 1, :, :],
|
564 |
+
feat_cache=self._feat_map,
|
565 |
+
feat_idx=self._conv_idx)
|
566 |
+
out = torch.cat([out, out_], 2)
|
567 |
+
self.clear_cache()
|
568 |
+
return out
|
569 |
+
|
570 |
+
def reparameterize(self, mu, log_var):
|
571 |
+
std = torch.exp(0.5 * log_var)
|
572 |
+
eps = torch.randn_like(std)
|
573 |
+
return eps * std + mu
|
574 |
+
|
575 |
+
def sample(self, imgs, deterministic=False):
|
576 |
+
mu, log_var = self.encode(imgs)
|
577 |
+
if deterministic:
|
578 |
+
return mu
|
579 |
+
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
580 |
+
return mu + std * torch.randn_like(std)
|
581 |
+
|
582 |
+
def clear_cache(self):
|
583 |
+
self._conv_num = count_conv3d(self.decoder)
|
584 |
+
self._conv_idx = [0]
|
585 |
+
self._feat_map = [None] * self._conv_num
|
586 |
+
#cache encode
|
587 |
+
self._enc_conv_num = count_conv3d(self.encoder)
|
588 |
+
self._enc_conv_idx = [0]
|
589 |
+
self._enc_feat_map = [None] * self._enc_conv_num
|
590 |
+
|
591 |
+
|
592 |
+
def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs):
|
593 |
+
"""
|
594 |
+
Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
|
595 |
+
"""
|
596 |
+
# params
|
597 |
+
cfg = dict(
|
598 |
+
dim=96,
|
599 |
+
z_dim=z_dim,
|
600 |
+
dim_mult=[1, 2, 4, 4],
|
601 |
+
num_res_blocks=2,
|
602 |
+
attn_scales=[],
|
603 |
+
temperal_downsample=[False, True, True],
|
604 |
+
dropout=0.0)
|
605 |
+
cfg.update(**kwargs)
|
606 |
+
|
607 |
+
# init model
|
608 |
+
with torch.device('meta'):
|
609 |
+
model = WanVAE_(**cfg)
|
610 |
+
|
611 |
+
# load checkpoint
|
612 |
+
logging.info(f'loading {pretrained_path}')
|
613 |
+
model.load_state_dict(
|
614 |
+
torch.load(pretrained_path, map_location=device), assign=True)
|
615 |
+
|
616 |
+
return model
|
617 |
+
|
618 |
+
|
619 |
+
class Wan2_1_VAE:
|
620 |
+
|
621 |
+
def __init__(self,
|
622 |
+
z_dim=16,
|
623 |
+
vae_pth='cache/vae_step_411000.pth',
|
624 |
+
dtype=torch.float,
|
625 |
+
device="cuda"):
|
626 |
+
self.dtype = dtype
|
627 |
+
self.device = device
|
628 |
+
|
629 |
+
mean = [
|
630 |
+
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
|
631 |
+
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
|
632 |
+
]
|
633 |
+
std = [
|
634 |
+
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
|
635 |
+
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
|
636 |
+
]
|
637 |
+
self.mean = torch.tensor(mean, dtype=dtype, device=device)
|
638 |
+
self.std = torch.tensor(std, dtype=dtype, device=device)
|
639 |
+
self.scale = [self.mean, 1.0 / self.std]
|
640 |
+
|
641 |
+
# init model
|
642 |
+
self.model = _video_vae(
|
643 |
+
pretrained_path=vae_pth,
|
644 |
+
z_dim=z_dim,
|
645 |
+
).eval().requires_grad_(False).to(device)
|
646 |
+
|
647 |
+
def encode(self, videos):
|
648 |
+
"""
|
649 |
+
videos: A list of videos each with shape [C, T, H, W].
|
650 |
+
"""
|
651 |
+
with amp.autocast(dtype=self.dtype):
|
652 |
+
return [
|
653 |
+
self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0)
|
654 |
+
for u in videos
|
655 |
+
]
|
656 |
+
|
657 |
+
def decode(self, zs):
|
658 |
+
with amp.autocast(dtype=self.dtype):
|
659 |
+
return [
|
660 |
+
self.model.decode(u.unsqueeze(0),
|
661 |
+
self.scale).float().clamp_(-1, 1).squeeze(0)
|
662 |
+
for u in zs
|
663 |
+
]
|
wan/modules/vae2_2.py
ADDED
@@ -0,0 +1,1051 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.cuda.amp as amp
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
"Wan2_2_VAE",
|
12 |
+
]
|
13 |
+
|
14 |
+
CACHE_T = 2
|
15 |
+
|
16 |
+
|
17 |
+
class CausalConv3d(nn.Conv3d):
|
18 |
+
"""
|
19 |
+
Causal 3d convolusion.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, *args, **kwargs):
|
23 |
+
super().__init__(*args, **kwargs)
|
24 |
+
self._padding = (
|
25 |
+
self.padding[2],
|
26 |
+
self.padding[2],
|
27 |
+
self.padding[1],
|
28 |
+
self.padding[1],
|
29 |
+
2 * self.padding[0],
|
30 |
+
0,
|
31 |
+
)
|
32 |
+
self.padding = (0, 0, 0)
|
33 |
+
|
34 |
+
def forward(self, x, cache_x=None):
|
35 |
+
padding = list(self._padding)
|
36 |
+
if cache_x is not None and self._padding[4] > 0:
|
37 |
+
cache_x = cache_x.to(x.device)
|
38 |
+
x = torch.cat([cache_x, x], dim=2)
|
39 |
+
padding[4] -= cache_x.shape[2]
|
40 |
+
x = F.pad(x, padding)
|
41 |
+
|
42 |
+
return super().forward(x)
|
43 |
+
|
44 |
+
|
45 |
+
class RMS_norm(nn.Module):
|
46 |
+
|
47 |
+
def __init__(self, dim, channel_first=True, images=True, bias=False):
|
48 |
+
super().__init__()
|
49 |
+
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
50 |
+
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
51 |
+
|
52 |
+
self.channel_first = channel_first
|
53 |
+
self.scale = dim**0.5
|
54 |
+
self.gamma = nn.Parameter(torch.ones(shape))
|
55 |
+
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
return (F.normalize(x, dim=(1 if self.channel_first else -1)) *
|
59 |
+
self.scale * self.gamma + self.bias)
|
60 |
+
|
61 |
+
|
62 |
+
class Upsample(nn.Upsample):
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
"""
|
66 |
+
Fix bfloat16 support for nearest neighbor interpolation.
|
67 |
+
"""
|
68 |
+
return super().forward(x.float()).type_as(x)
|
69 |
+
|
70 |
+
|
71 |
+
class Resample(nn.Module):
|
72 |
+
|
73 |
+
def __init__(self, dim, mode):
|
74 |
+
assert mode in (
|
75 |
+
"none",
|
76 |
+
"upsample2d",
|
77 |
+
"upsample3d",
|
78 |
+
"downsample2d",
|
79 |
+
"downsample3d",
|
80 |
+
)
|
81 |
+
super().__init__()
|
82 |
+
self.dim = dim
|
83 |
+
self.mode = mode
|
84 |
+
|
85 |
+
# layers
|
86 |
+
if mode == "upsample2d":
|
87 |
+
self.resample = nn.Sequential(
|
88 |
+
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
89 |
+
nn.Conv2d(dim, dim, 3, padding=1),
|
90 |
+
)
|
91 |
+
elif mode == "upsample3d":
|
92 |
+
self.resample = nn.Sequential(
|
93 |
+
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
94 |
+
nn.Conv2d(dim, dim, 3, padding=1),
|
95 |
+
# nn.Conv2d(dim, dim//2, 3, padding=1)
|
96 |
+
)
|
97 |
+
self.time_conv = CausalConv3d(
|
98 |
+
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
99 |
+
elif mode == "downsample2d":
|
100 |
+
self.resample = nn.Sequential(
|
101 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
102 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
103 |
+
elif mode == "downsample3d":
|
104 |
+
self.resample = nn.Sequential(
|
105 |
+
nn.ZeroPad2d((0, 1, 0, 1)),
|
106 |
+
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
107 |
+
self.time_conv = CausalConv3d(
|
108 |
+
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
109 |
+
else:
|
110 |
+
self.resample = nn.Identity()
|
111 |
+
|
112 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
113 |
+
b, c, t, h, w = x.size()
|
114 |
+
if self.mode == "upsample3d":
|
115 |
+
if feat_cache is not None:
|
116 |
+
idx = feat_idx[0]
|
117 |
+
if feat_cache[idx] is None:
|
118 |
+
feat_cache[idx] = "Rep"
|
119 |
+
feat_idx[0] += 1
|
120 |
+
else:
|
121 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
122 |
+
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
|
123 |
+
feat_cache[idx] != "Rep"):
|
124 |
+
# cache last frame of last two chunk
|
125 |
+
cache_x = torch.cat(
|
126 |
+
[
|
127 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
128 |
+
cache_x.device),
|
129 |
+
cache_x,
|
130 |
+
],
|
131 |
+
dim=2,
|
132 |
+
)
|
133 |
+
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
|
134 |
+
feat_cache[idx] == "Rep"):
|
135 |
+
cache_x = torch.cat(
|
136 |
+
[
|
137 |
+
torch.zeros_like(cache_x).to(cache_x.device),
|
138 |
+
cache_x
|
139 |
+
],
|
140 |
+
dim=2,
|
141 |
+
)
|
142 |
+
if feat_cache[idx] == "Rep":
|
143 |
+
x = self.time_conv(x)
|
144 |
+
else:
|
145 |
+
x = self.time_conv(x, feat_cache[idx])
|
146 |
+
feat_cache[idx] = cache_x
|
147 |
+
feat_idx[0] += 1
|
148 |
+
x = x.reshape(b, 2, c, t, h, w)
|
149 |
+
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
|
150 |
+
3)
|
151 |
+
x = x.reshape(b, c, t * 2, h, w)
|
152 |
+
t = x.shape[2]
|
153 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
154 |
+
x = self.resample(x)
|
155 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
|
156 |
+
|
157 |
+
if self.mode == "downsample3d":
|
158 |
+
if feat_cache is not None:
|
159 |
+
idx = feat_idx[0]
|
160 |
+
if feat_cache[idx] is None:
|
161 |
+
feat_cache[idx] = x.clone()
|
162 |
+
feat_idx[0] += 1
|
163 |
+
else:
|
164 |
+
cache_x = x[:, :, -1:, :, :].clone()
|
165 |
+
x = self.time_conv(
|
166 |
+
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
167 |
+
feat_cache[idx] = cache_x
|
168 |
+
feat_idx[0] += 1
|
169 |
+
return x
|
170 |
+
|
171 |
+
def init_weight(self, conv):
|
172 |
+
conv_weight = conv.weight.detach().clone()
|
173 |
+
nn.init.zeros_(conv_weight)
|
174 |
+
c1, c2, t, h, w = conv_weight.size()
|
175 |
+
one_matrix = torch.eye(c1, c2)
|
176 |
+
init_matrix = one_matrix
|
177 |
+
nn.init.zeros_(conv_weight)
|
178 |
+
conv_weight.data[:, :, 1, 0, 0] = init_matrix # * 0.5
|
179 |
+
conv.weight = nn.Parameter(conv_weight)
|
180 |
+
nn.init.zeros_(conv.bias.data)
|
181 |
+
|
182 |
+
def init_weight2(self, conv):
|
183 |
+
conv_weight = conv.weight.data.detach().clone()
|
184 |
+
nn.init.zeros_(conv_weight)
|
185 |
+
c1, c2, t, h, w = conv_weight.size()
|
186 |
+
init_matrix = torch.eye(c1 // 2, c2)
|
187 |
+
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
188 |
+
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
189 |
+
conv.weight = nn.Parameter(conv_weight)
|
190 |
+
nn.init.zeros_(conv.bias.data)
|
191 |
+
|
192 |
+
|
193 |
+
class ResidualBlock(nn.Module):
|
194 |
+
|
195 |
+
def __init__(self, in_dim, out_dim, dropout=0.0):
|
196 |
+
super().__init__()
|
197 |
+
self.in_dim = in_dim
|
198 |
+
self.out_dim = out_dim
|
199 |
+
|
200 |
+
# layers
|
201 |
+
self.residual = nn.Sequential(
|
202 |
+
RMS_norm(in_dim, images=False),
|
203 |
+
nn.SiLU(),
|
204 |
+
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
205 |
+
RMS_norm(out_dim, images=False),
|
206 |
+
nn.SiLU(),
|
207 |
+
nn.Dropout(dropout),
|
208 |
+
CausalConv3d(out_dim, out_dim, 3, padding=1),
|
209 |
+
)
|
210 |
+
self.shortcut = (
|
211 |
+
CausalConv3d(in_dim, out_dim, 1)
|
212 |
+
if in_dim != out_dim else nn.Identity())
|
213 |
+
|
214 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
215 |
+
h = self.shortcut(x)
|
216 |
+
for layer in self.residual:
|
217 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
218 |
+
idx = feat_idx[0]
|
219 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
220 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
221 |
+
# cache last frame of last two chunk
|
222 |
+
cache_x = torch.cat(
|
223 |
+
[
|
224 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
225 |
+
cache_x.device),
|
226 |
+
cache_x,
|
227 |
+
],
|
228 |
+
dim=2,
|
229 |
+
)
|
230 |
+
x = layer(x, feat_cache[idx])
|
231 |
+
feat_cache[idx] = cache_x
|
232 |
+
feat_idx[0] += 1
|
233 |
+
else:
|
234 |
+
x = layer(x)
|
235 |
+
return x + h
|
236 |
+
|
237 |
+
|
238 |
+
class AttentionBlock(nn.Module):
|
239 |
+
"""
|
240 |
+
Causal self-attention with a single head.
|
241 |
+
"""
|
242 |
+
|
243 |
+
def __init__(self, dim):
|
244 |
+
super().__init__()
|
245 |
+
self.dim = dim
|
246 |
+
|
247 |
+
# layers
|
248 |
+
self.norm = RMS_norm(dim)
|
249 |
+
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
250 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
251 |
+
|
252 |
+
# zero out the last layer params
|
253 |
+
nn.init.zeros_(self.proj.weight)
|
254 |
+
|
255 |
+
def forward(self, x):
|
256 |
+
identity = x
|
257 |
+
b, c, t, h, w = x.size()
|
258 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
259 |
+
x = self.norm(x)
|
260 |
+
# compute query, key, value
|
261 |
+
q, k, v = (
|
262 |
+
self.to_qkv(x).reshape(b * t, 1, c * 3,
|
263 |
+
-1).permute(0, 1, 3,
|
264 |
+
2).contiguous().chunk(3, dim=-1))
|
265 |
+
|
266 |
+
# apply attention
|
267 |
+
x = F.scaled_dot_product_attention(
|
268 |
+
q,
|
269 |
+
k,
|
270 |
+
v,
|
271 |
+
)
|
272 |
+
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
|
273 |
+
|
274 |
+
# output
|
275 |
+
x = self.proj(x)
|
276 |
+
x = rearrange(x, "(b t) c h w-> b c t h w", t=t)
|
277 |
+
return x + identity
|
278 |
+
|
279 |
+
|
280 |
+
def patchify(x, patch_size):
|
281 |
+
if patch_size == 1:
|
282 |
+
return x
|
283 |
+
if x.dim() == 4:
|
284 |
+
x = rearrange(
|
285 |
+
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size)
|
286 |
+
elif x.dim() == 5:
|
287 |
+
x = rearrange(
|
288 |
+
x,
|
289 |
+
"b c f (h q) (w r) -> b (c r q) f h w",
|
290 |
+
q=patch_size,
|
291 |
+
r=patch_size,
|
292 |
+
)
|
293 |
+
else:
|
294 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
295 |
+
|
296 |
+
return x
|
297 |
+
|
298 |
+
|
299 |
+
def unpatchify(x, patch_size):
|
300 |
+
if patch_size == 1:
|
301 |
+
return x
|
302 |
+
|
303 |
+
if x.dim() == 4:
|
304 |
+
x = rearrange(
|
305 |
+
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size)
|
306 |
+
elif x.dim() == 5:
|
307 |
+
x = rearrange(
|
308 |
+
x,
|
309 |
+
"b (c r q) f h w -> b c f (h q) (w r)",
|
310 |
+
q=patch_size,
|
311 |
+
r=patch_size,
|
312 |
+
)
|
313 |
+
return x
|
314 |
+
|
315 |
+
|
316 |
+
class AvgDown3D(nn.Module):
|
317 |
+
|
318 |
+
def __init__(
|
319 |
+
self,
|
320 |
+
in_channels,
|
321 |
+
out_channels,
|
322 |
+
factor_t,
|
323 |
+
factor_s=1,
|
324 |
+
):
|
325 |
+
super().__init__()
|
326 |
+
self.in_channels = in_channels
|
327 |
+
self.out_channels = out_channels
|
328 |
+
self.factor_t = factor_t
|
329 |
+
self.factor_s = factor_s
|
330 |
+
self.factor = self.factor_t * self.factor_s * self.factor_s
|
331 |
+
|
332 |
+
assert in_channels * self.factor % out_channels == 0
|
333 |
+
self.group_size = in_channels * self.factor // out_channels
|
334 |
+
|
335 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
336 |
+
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t
|
337 |
+
pad = (0, 0, 0, 0, pad_t, 0)
|
338 |
+
x = F.pad(x, pad)
|
339 |
+
B, C, T, H, W = x.shape
|
340 |
+
x = x.view(
|
341 |
+
B,
|
342 |
+
C,
|
343 |
+
T // self.factor_t,
|
344 |
+
self.factor_t,
|
345 |
+
H // self.factor_s,
|
346 |
+
self.factor_s,
|
347 |
+
W // self.factor_s,
|
348 |
+
self.factor_s,
|
349 |
+
)
|
350 |
+
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
|
351 |
+
x = x.view(
|
352 |
+
B,
|
353 |
+
C * self.factor,
|
354 |
+
T // self.factor_t,
|
355 |
+
H // self.factor_s,
|
356 |
+
W // self.factor_s,
|
357 |
+
)
|
358 |
+
x = x.view(
|
359 |
+
B,
|
360 |
+
self.out_channels,
|
361 |
+
self.group_size,
|
362 |
+
T // self.factor_t,
|
363 |
+
H // self.factor_s,
|
364 |
+
W // self.factor_s,
|
365 |
+
)
|
366 |
+
x = x.mean(dim=2)
|
367 |
+
return x
|
368 |
+
|
369 |
+
|
370 |
+
class DupUp3D(nn.Module):
|
371 |
+
|
372 |
+
def __init__(
|
373 |
+
self,
|
374 |
+
in_channels: int,
|
375 |
+
out_channels: int,
|
376 |
+
factor_t,
|
377 |
+
factor_s=1,
|
378 |
+
):
|
379 |
+
super().__init__()
|
380 |
+
self.in_channels = in_channels
|
381 |
+
self.out_channels = out_channels
|
382 |
+
|
383 |
+
self.factor_t = factor_t
|
384 |
+
self.factor_s = factor_s
|
385 |
+
self.factor = self.factor_t * self.factor_s * self.factor_s
|
386 |
+
|
387 |
+
assert out_channels * self.factor % in_channels == 0
|
388 |
+
self.repeats = out_channels * self.factor // in_channels
|
389 |
+
|
390 |
+
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor:
|
391 |
+
x = x.repeat_interleave(self.repeats, dim=1)
|
392 |
+
x = x.view(
|
393 |
+
x.size(0),
|
394 |
+
self.out_channels,
|
395 |
+
self.factor_t,
|
396 |
+
self.factor_s,
|
397 |
+
self.factor_s,
|
398 |
+
x.size(2),
|
399 |
+
x.size(3),
|
400 |
+
x.size(4),
|
401 |
+
)
|
402 |
+
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
|
403 |
+
x = x.view(
|
404 |
+
x.size(0),
|
405 |
+
self.out_channels,
|
406 |
+
x.size(2) * self.factor_t,
|
407 |
+
x.size(4) * self.factor_s,
|
408 |
+
x.size(6) * self.factor_s,
|
409 |
+
)
|
410 |
+
if first_chunk:
|
411 |
+
x = x[:, :, self.factor_t - 1:, :, :]
|
412 |
+
return x
|
413 |
+
|
414 |
+
|
415 |
+
class Down_ResidualBlock(nn.Module):
|
416 |
+
|
417 |
+
def __init__(self,
|
418 |
+
in_dim,
|
419 |
+
out_dim,
|
420 |
+
dropout,
|
421 |
+
mult,
|
422 |
+
temperal_downsample=False,
|
423 |
+
down_flag=False):
|
424 |
+
super().__init__()
|
425 |
+
|
426 |
+
# Shortcut path with downsample
|
427 |
+
self.avg_shortcut = AvgDown3D(
|
428 |
+
in_dim,
|
429 |
+
out_dim,
|
430 |
+
factor_t=2 if temperal_downsample else 1,
|
431 |
+
factor_s=2 if down_flag else 1,
|
432 |
+
)
|
433 |
+
|
434 |
+
# Main path with residual blocks and downsample
|
435 |
+
downsamples = []
|
436 |
+
for _ in range(mult):
|
437 |
+
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
438 |
+
in_dim = out_dim
|
439 |
+
|
440 |
+
# Add the final downsample block
|
441 |
+
if down_flag:
|
442 |
+
mode = "downsample3d" if temperal_downsample else "downsample2d"
|
443 |
+
downsamples.append(Resample(out_dim, mode=mode))
|
444 |
+
|
445 |
+
self.downsamples = nn.Sequential(*downsamples)
|
446 |
+
|
447 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
448 |
+
x_copy = x.clone()
|
449 |
+
for module in self.downsamples:
|
450 |
+
x = module(x, feat_cache, feat_idx)
|
451 |
+
|
452 |
+
return x + self.avg_shortcut(x_copy)
|
453 |
+
|
454 |
+
|
455 |
+
class Up_ResidualBlock(nn.Module):
|
456 |
+
|
457 |
+
def __init__(self,
|
458 |
+
in_dim,
|
459 |
+
out_dim,
|
460 |
+
dropout,
|
461 |
+
mult,
|
462 |
+
temperal_upsample=False,
|
463 |
+
up_flag=False):
|
464 |
+
super().__init__()
|
465 |
+
# Shortcut path with upsample
|
466 |
+
if up_flag:
|
467 |
+
self.avg_shortcut = DupUp3D(
|
468 |
+
in_dim,
|
469 |
+
out_dim,
|
470 |
+
factor_t=2 if temperal_upsample else 1,
|
471 |
+
factor_s=2 if up_flag else 1,
|
472 |
+
)
|
473 |
+
else:
|
474 |
+
self.avg_shortcut = None
|
475 |
+
|
476 |
+
# Main path with residual blocks and upsample
|
477 |
+
upsamples = []
|
478 |
+
for _ in range(mult):
|
479 |
+
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
480 |
+
in_dim = out_dim
|
481 |
+
|
482 |
+
# Add the final upsample block
|
483 |
+
if up_flag:
|
484 |
+
mode = "upsample3d" if temperal_upsample else "upsample2d"
|
485 |
+
upsamples.append(Resample(out_dim, mode=mode))
|
486 |
+
|
487 |
+
self.upsamples = nn.Sequential(*upsamples)
|
488 |
+
|
489 |
+
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
490 |
+
x_main = x.clone()
|
491 |
+
for module in self.upsamples:
|
492 |
+
x_main = module(x_main, feat_cache, feat_idx)
|
493 |
+
if self.avg_shortcut is not None:
|
494 |
+
x_shortcut = self.avg_shortcut(x, first_chunk)
|
495 |
+
return x_main + x_shortcut
|
496 |
+
else:
|
497 |
+
return x_main
|
498 |
+
|
499 |
+
|
500 |
+
class Encoder3d(nn.Module):
|
501 |
+
|
502 |
+
def __init__(
|
503 |
+
self,
|
504 |
+
dim=128,
|
505 |
+
z_dim=4,
|
506 |
+
dim_mult=[1, 2, 4, 4],
|
507 |
+
num_res_blocks=2,
|
508 |
+
attn_scales=[],
|
509 |
+
temperal_downsample=[True, True, False],
|
510 |
+
dropout=0.0,
|
511 |
+
):
|
512 |
+
super().__init__()
|
513 |
+
self.dim = dim
|
514 |
+
self.z_dim = z_dim
|
515 |
+
self.dim_mult = dim_mult
|
516 |
+
self.num_res_blocks = num_res_blocks
|
517 |
+
self.attn_scales = attn_scales
|
518 |
+
self.temperal_downsample = temperal_downsample
|
519 |
+
|
520 |
+
# dimensions
|
521 |
+
dims = [dim * u for u in [1] + dim_mult]
|
522 |
+
scale = 1.0
|
523 |
+
|
524 |
+
# init block
|
525 |
+
self.conv1 = CausalConv3d(12, dims[0], 3, padding=1)
|
526 |
+
|
527 |
+
# downsample blocks
|
528 |
+
downsamples = []
|
529 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
530 |
+
t_down_flag = (
|
531 |
+
temperal_downsample[i]
|
532 |
+
if i < len(temperal_downsample) else False)
|
533 |
+
downsamples.append(
|
534 |
+
Down_ResidualBlock(
|
535 |
+
in_dim=in_dim,
|
536 |
+
out_dim=out_dim,
|
537 |
+
dropout=dropout,
|
538 |
+
mult=num_res_blocks,
|
539 |
+
temperal_downsample=t_down_flag,
|
540 |
+
down_flag=i != len(dim_mult) - 1,
|
541 |
+
))
|
542 |
+
scale /= 2.0
|
543 |
+
self.downsamples = nn.Sequential(*downsamples)
|
544 |
+
|
545 |
+
# middle blocks
|
546 |
+
self.middle = nn.Sequential(
|
547 |
+
ResidualBlock(out_dim, out_dim, dropout),
|
548 |
+
AttentionBlock(out_dim),
|
549 |
+
ResidualBlock(out_dim, out_dim, dropout),
|
550 |
+
)
|
551 |
+
|
552 |
+
# # output blocks
|
553 |
+
self.head = nn.Sequential(
|
554 |
+
RMS_norm(out_dim, images=False),
|
555 |
+
nn.SiLU(),
|
556 |
+
CausalConv3d(out_dim, z_dim, 3, padding=1),
|
557 |
+
)
|
558 |
+
|
559 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
560 |
+
|
561 |
+
if feat_cache is not None:
|
562 |
+
idx = feat_idx[0]
|
563 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
564 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
565 |
+
cache_x = torch.cat(
|
566 |
+
[
|
567 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
568 |
+
cache_x.device),
|
569 |
+
cache_x,
|
570 |
+
],
|
571 |
+
dim=2,
|
572 |
+
)
|
573 |
+
x = self.conv1(x, feat_cache[idx])
|
574 |
+
feat_cache[idx] = cache_x
|
575 |
+
feat_idx[0] += 1
|
576 |
+
else:
|
577 |
+
x = self.conv1(x)
|
578 |
+
|
579 |
+
## downsamples
|
580 |
+
for layer in self.downsamples:
|
581 |
+
if feat_cache is not None:
|
582 |
+
x = layer(x, feat_cache, feat_idx)
|
583 |
+
else:
|
584 |
+
x = layer(x)
|
585 |
+
|
586 |
+
## middle
|
587 |
+
for layer in self.middle:
|
588 |
+
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
589 |
+
x = layer(x, feat_cache, feat_idx)
|
590 |
+
else:
|
591 |
+
x = layer(x)
|
592 |
+
|
593 |
+
## head
|
594 |
+
for layer in self.head:
|
595 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
596 |
+
idx = feat_idx[0]
|
597 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
598 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
599 |
+
cache_x = torch.cat(
|
600 |
+
[
|
601 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
602 |
+
cache_x.device),
|
603 |
+
cache_x,
|
604 |
+
],
|
605 |
+
dim=2,
|
606 |
+
)
|
607 |
+
x = layer(x, feat_cache[idx])
|
608 |
+
feat_cache[idx] = cache_x
|
609 |
+
feat_idx[0] += 1
|
610 |
+
else:
|
611 |
+
x = layer(x)
|
612 |
+
|
613 |
+
return x
|
614 |
+
|
615 |
+
|
616 |
+
class Decoder3d(nn.Module):
|
617 |
+
|
618 |
+
def __init__(
|
619 |
+
self,
|
620 |
+
dim=128,
|
621 |
+
z_dim=4,
|
622 |
+
dim_mult=[1, 2, 4, 4],
|
623 |
+
num_res_blocks=2,
|
624 |
+
attn_scales=[],
|
625 |
+
temperal_upsample=[False, True, True],
|
626 |
+
dropout=0.0,
|
627 |
+
):
|
628 |
+
super().__init__()
|
629 |
+
self.dim = dim
|
630 |
+
self.z_dim = z_dim
|
631 |
+
self.dim_mult = dim_mult
|
632 |
+
self.num_res_blocks = num_res_blocks
|
633 |
+
self.attn_scales = attn_scales
|
634 |
+
self.temperal_upsample = temperal_upsample
|
635 |
+
|
636 |
+
# dimensions
|
637 |
+
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
638 |
+
scale = 1.0 / 2**(len(dim_mult) - 2)
|
639 |
+
# init block
|
640 |
+
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
641 |
+
|
642 |
+
# middle blocks
|
643 |
+
self.middle = nn.Sequential(
|
644 |
+
ResidualBlock(dims[0], dims[0], dropout),
|
645 |
+
AttentionBlock(dims[0]),
|
646 |
+
ResidualBlock(dims[0], dims[0], dropout),
|
647 |
+
)
|
648 |
+
|
649 |
+
# upsample blocks
|
650 |
+
upsamples = []
|
651 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
652 |
+
t_up_flag = temperal_upsample[i] if i < len(
|
653 |
+
temperal_upsample) else False
|
654 |
+
upsamples.append(
|
655 |
+
Up_ResidualBlock(
|
656 |
+
in_dim=in_dim,
|
657 |
+
out_dim=out_dim,
|
658 |
+
dropout=dropout,
|
659 |
+
mult=num_res_blocks + 1,
|
660 |
+
temperal_upsample=t_up_flag,
|
661 |
+
up_flag=i != len(dim_mult) - 1,
|
662 |
+
))
|
663 |
+
self.upsamples = nn.Sequential(*upsamples)
|
664 |
+
|
665 |
+
# output blocks
|
666 |
+
self.head = nn.Sequential(
|
667 |
+
RMS_norm(out_dim, images=False),
|
668 |
+
nn.SiLU(),
|
669 |
+
CausalConv3d(out_dim, 12, 3, padding=1),
|
670 |
+
)
|
671 |
+
|
672 |
+
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
673 |
+
if feat_cache is not None:
|
674 |
+
idx = feat_idx[0]
|
675 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
676 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
677 |
+
cache_x = torch.cat(
|
678 |
+
[
|
679 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
680 |
+
cache_x.device),
|
681 |
+
cache_x,
|
682 |
+
],
|
683 |
+
dim=2,
|
684 |
+
)
|
685 |
+
x = self.conv1(x, feat_cache[idx])
|
686 |
+
feat_cache[idx] = cache_x
|
687 |
+
feat_idx[0] += 1
|
688 |
+
else:
|
689 |
+
x = self.conv1(x)
|
690 |
+
|
691 |
+
for layer in self.middle:
|
692 |
+
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
693 |
+
x = layer(x, feat_cache, feat_idx)
|
694 |
+
else:
|
695 |
+
x = layer(x)
|
696 |
+
|
697 |
+
## upsamples
|
698 |
+
for layer in self.upsamples:
|
699 |
+
if feat_cache is not None:
|
700 |
+
x = layer(x, feat_cache, feat_idx, first_chunk)
|
701 |
+
else:
|
702 |
+
x = layer(x)
|
703 |
+
|
704 |
+
## head
|
705 |
+
for layer in self.head:
|
706 |
+
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
707 |
+
idx = feat_idx[0]
|
708 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
709 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
710 |
+
cache_x = torch.cat(
|
711 |
+
[
|
712 |
+
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
713 |
+
cache_x.device),
|
714 |
+
cache_x,
|
715 |
+
],
|
716 |
+
dim=2,
|
717 |
+
)
|
718 |
+
x = layer(x, feat_cache[idx])
|
719 |
+
feat_cache[idx] = cache_x
|
720 |
+
feat_idx[0] += 1
|
721 |
+
else:
|
722 |
+
x = layer(x)
|
723 |
+
return x
|
724 |
+
|
725 |
+
|
726 |
+
def count_conv3d(model):
|
727 |
+
count = 0
|
728 |
+
for m in model.modules():
|
729 |
+
if isinstance(m, CausalConv3d):
|
730 |
+
count += 1
|
731 |
+
return count
|
732 |
+
|
733 |
+
|
734 |
+
class WanVAE_(nn.Module):
|
735 |
+
|
736 |
+
def __init__(
|
737 |
+
self,
|
738 |
+
dim=160,
|
739 |
+
dec_dim=256,
|
740 |
+
z_dim=16,
|
741 |
+
dim_mult=[1, 2, 4, 4],
|
742 |
+
num_res_blocks=2,
|
743 |
+
attn_scales=[],
|
744 |
+
temperal_downsample=[True, True, False],
|
745 |
+
dropout=0.0,
|
746 |
+
):
|
747 |
+
super().__init__()
|
748 |
+
self.dim = dim
|
749 |
+
self.z_dim = z_dim
|
750 |
+
self.dim_mult = dim_mult
|
751 |
+
self.num_res_blocks = num_res_blocks
|
752 |
+
self.attn_scales = attn_scales
|
753 |
+
self.temperal_downsample = temperal_downsample
|
754 |
+
self.temperal_upsample = temperal_downsample[::-1]
|
755 |
+
|
756 |
+
# modules
|
757 |
+
self.encoder = Encoder3d(
|
758 |
+
dim,
|
759 |
+
z_dim * 2,
|
760 |
+
dim_mult,
|
761 |
+
num_res_blocks,
|
762 |
+
attn_scales,
|
763 |
+
self.temperal_downsample,
|
764 |
+
dropout,
|
765 |
+
)
|
766 |
+
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
767 |
+
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
768 |
+
self.decoder = Decoder3d(
|
769 |
+
dec_dim,
|
770 |
+
z_dim,
|
771 |
+
dim_mult,
|
772 |
+
num_res_blocks,
|
773 |
+
attn_scales,
|
774 |
+
self.temperal_upsample,
|
775 |
+
dropout,
|
776 |
+
)
|
777 |
+
|
778 |
+
def forward(self, x, scale=[0, 1]):
|
779 |
+
mu = self.encode(x, scale)
|
780 |
+
x_recon = self.decode(mu, scale)
|
781 |
+
return x_recon, mu
|
782 |
+
|
783 |
+
def encode(self, x, scale):
|
784 |
+
self.clear_cache()
|
785 |
+
x = patchify(x, patch_size=2)
|
786 |
+
t = x.shape[2]
|
787 |
+
iter_ = 1 + (t - 1) // 4
|
788 |
+
for i in range(iter_):
|
789 |
+
self._enc_conv_idx = [0]
|
790 |
+
if i == 0:
|
791 |
+
out = self.encoder(
|
792 |
+
x[:, :, :1, :, :],
|
793 |
+
feat_cache=self._enc_feat_map,
|
794 |
+
feat_idx=self._enc_conv_idx,
|
795 |
+
)
|
796 |
+
else:
|
797 |
+
out_ = self.encoder(
|
798 |
+
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
799 |
+
feat_cache=self._enc_feat_map,
|
800 |
+
feat_idx=self._enc_conv_idx,
|
801 |
+
)
|
802 |
+
out = torch.cat([out, out_], 2)
|
803 |
+
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
804 |
+
if isinstance(scale[0], torch.Tensor):
|
805 |
+
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
|
806 |
+
1, self.z_dim, 1, 1, 1)
|
807 |
+
else:
|
808 |
+
mu = (mu - scale[0]) * scale[1]
|
809 |
+
self.clear_cache()
|
810 |
+
return mu
|
811 |
+
|
812 |
+
def decode(self, z, scale):
|
813 |
+
self.clear_cache()
|
814 |
+
if isinstance(scale[0], torch.Tensor):
|
815 |
+
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
|
816 |
+
1, self.z_dim, 1, 1, 1)
|
817 |
+
else:
|
818 |
+
z = z / scale[1] + scale[0]
|
819 |
+
iter_ = z.shape[2]
|
820 |
+
x = self.conv2(z)
|
821 |
+
for i in range(iter_):
|
822 |
+
self._conv_idx = [0]
|
823 |
+
if i == 0:
|
824 |
+
out = self.decoder(
|
825 |
+
x[:, :, i:i + 1, :, :],
|
826 |
+
feat_cache=self._feat_map,
|
827 |
+
feat_idx=self._conv_idx,
|
828 |
+
first_chunk=True,
|
829 |
+
)
|
830 |
+
else:
|
831 |
+
out_ = self.decoder(
|
832 |
+
x[:, :, i:i + 1, :, :],
|
833 |
+
feat_cache=self._feat_map,
|
834 |
+
feat_idx=self._conv_idx,
|
835 |
+
)
|
836 |
+
out = torch.cat([out, out_], 2)
|
837 |
+
out = unpatchify(out, patch_size=2)
|
838 |
+
self.clear_cache()
|
839 |
+
return out
|
840 |
+
|
841 |
+
def reparameterize(self, mu, log_var):
|
842 |
+
std = torch.exp(0.5 * log_var)
|
843 |
+
eps = torch.randn_like(std)
|
844 |
+
return eps * std + mu
|
845 |
+
|
846 |
+
def sample(self, imgs, deterministic=False):
|
847 |
+
mu, log_var = self.encode(imgs)
|
848 |
+
if deterministic:
|
849 |
+
return mu
|
850 |
+
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
851 |
+
return mu + std * torch.randn_like(std)
|
852 |
+
|
853 |
+
def clear_cache(self):
|
854 |
+
self._conv_num = count_conv3d(self.decoder)
|
855 |
+
self._conv_idx = [0]
|
856 |
+
self._feat_map = [None] * self._conv_num
|
857 |
+
# cache encode
|
858 |
+
self._enc_conv_num = count_conv3d(self.encoder)
|
859 |
+
self._enc_conv_idx = [0]
|
860 |
+
self._enc_feat_map = [None] * self._enc_conv_num
|
861 |
+
|
862 |
+
|
863 |
+
def _video_vae(pretrained_path=None, z_dim=16, dim=160, device="cpu", **kwargs):
|
864 |
+
# params
|
865 |
+
cfg = dict(
|
866 |
+
dim=dim,
|
867 |
+
z_dim=z_dim,
|
868 |
+
dim_mult=[1, 2, 4, 4],
|
869 |
+
num_res_blocks=2,
|
870 |
+
attn_scales=[],
|
871 |
+
temperal_downsample=[True, True, True],
|
872 |
+
dropout=0.0,
|
873 |
+
)
|
874 |
+
cfg.update(**kwargs)
|
875 |
+
|
876 |
+
# init model
|
877 |
+
with torch.device("meta"):
|
878 |
+
model = WanVAE_(**cfg)
|
879 |
+
|
880 |
+
# load checkpoint
|
881 |
+
logging.info(f"loading {pretrained_path}")
|
882 |
+
model.load_state_dict(
|
883 |
+
torch.load(pretrained_path, map_location=device), assign=True)
|
884 |
+
|
885 |
+
return model
|
886 |
+
|
887 |
+
|
888 |
+
class Wan2_2_VAE:
|
889 |
+
|
890 |
+
def __init__(
|
891 |
+
self,
|
892 |
+
z_dim=48,
|
893 |
+
c_dim=160,
|
894 |
+
vae_pth=None,
|
895 |
+
dim_mult=[1, 2, 4, 4],
|
896 |
+
temperal_downsample=[False, True, True],
|
897 |
+
dtype=torch.float,
|
898 |
+
device="cuda",
|
899 |
+
):
|
900 |
+
|
901 |
+
self.dtype = dtype
|
902 |
+
self.device = device
|
903 |
+
|
904 |
+
mean = torch.tensor(
|
905 |
+
[
|
906 |
+
-0.2289,
|
907 |
+
-0.0052,
|
908 |
+
-0.1323,
|
909 |
+
-0.2339,
|
910 |
+
-0.2799,
|
911 |
+
0.0174,
|
912 |
+
0.1838,
|
913 |
+
0.1557,
|
914 |
+
-0.1382,
|
915 |
+
0.0542,
|
916 |
+
0.2813,
|
917 |
+
0.0891,
|
918 |
+
0.1570,
|
919 |
+
-0.0098,
|
920 |
+
0.0375,
|
921 |
+
-0.1825,
|
922 |
+
-0.2246,
|
923 |
+
-0.1207,
|
924 |
+
-0.0698,
|
925 |
+
0.5109,
|
926 |
+
0.2665,
|
927 |
+
-0.2108,
|
928 |
+
-0.2158,
|
929 |
+
0.2502,
|
930 |
+
-0.2055,
|
931 |
+
-0.0322,
|
932 |
+
0.1109,
|
933 |
+
0.1567,
|
934 |
+
-0.0729,
|
935 |
+
0.0899,
|
936 |
+
-0.2799,
|
937 |
+
-0.1230,
|
938 |
+
-0.0313,
|
939 |
+
-0.1649,
|
940 |
+
0.0117,
|
941 |
+
0.0723,
|
942 |
+
-0.2839,
|
943 |
+
-0.2083,
|
944 |
+
-0.0520,
|
945 |
+
0.3748,
|
946 |
+
0.0152,
|
947 |
+
0.1957,
|
948 |
+
0.1433,
|
949 |
+
-0.2944,
|
950 |
+
0.3573,
|
951 |
+
-0.0548,
|
952 |
+
-0.1681,
|
953 |
+
-0.0667,
|
954 |
+
],
|
955 |
+
dtype=dtype,
|
956 |
+
device=device,
|
957 |
+
)
|
958 |
+
std = torch.tensor(
|
959 |
+
[
|
960 |
+
0.4765,
|
961 |
+
1.0364,
|
962 |
+
0.4514,
|
963 |
+
1.1677,
|
964 |
+
0.5313,
|
965 |
+
0.4990,
|
966 |
+
0.4818,
|
967 |
+
0.5013,
|
968 |
+
0.8158,
|
969 |
+
1.0344,
|
970 |
+
0.5894,
|
971 |
+
1.0901,
|
972 |
+
0.6885,
|
973 |
+
0.6165,
|
974 |
+
0.8454,
|
975 |
+
0.4978,
|
976 |
+
0.5759,
|
977 |
+
0.3523,
|
978 |
+
0.7135,
|
979 |
+
0.6804,
|
980 |
+
0.5833,
|
981 |
+
1.4146,
|
982 |
+
0.8986,
|
983 |
+
0.5659,
|
984 |
+
0.7069,
|
985 |
+
0.5338,
|
986 |
+
0.4889,
|
987 |
+
0.4917,
|
988 |
+
0.4069,
|
989 |
+
0.4999,
|
990 |
+
0.6866,
|
991 |
+
0.4093,
|
992 |
+
0.5709,
|
993 |
+
0.6065,
|
994 |
+
0.6415,
|
995 |
+
0.4944,
|
996 |
+
0.5726,
|
997 |
+
1.2042,
|
998 |
+
0.5458,
|
999 |
+
1.6887,
|
1000 |
+
0.3971,
|
1001 |
+
1.0600,
|
1002 |
+
0.3943,
|
1003 |
+
0.5537,
|
1004 |
+
0.5444,
|
1005 |
+
0.4089,
|
1006 |
+
0.7468,
|
1007 |
+
0.7744,
|
1008 |
+
],
|
1009 |
+
dtype=dtype,
|
1010 |
+
device=device,
|
1011 |
+
)
|
1012 |
+
self.scale = [mean, 1.0 / std]
|
1013 |
+
|
1014 |
+
# init model
|
1015 |
+
self.model = (
|
1016 |
+
_video_vae(
|
1017 |
+
pretrained_path=vae_pth,
|
1018 |
+
z_dim=z_dim,
|
1019 |
+
dim=c_dim,
|
1020 |
+
dim_mult=dim_mult,
|
1021 |
+
temperal_downsample=temperal_downsample,
|
1022 |
+
).eval().requires_grad_(False).to(device))
|
1023 |
+
|
1024 |
+
def encode(self, videos):
|
1025 |
+
try:
|
1026 |
+
if not isinstance(videos, list):
|
1027 |
+
raise TypeError("videos should be a list")
|
1028 |
+
with amp.autocast(dtype=self.dtype):
|
1029 |
+
return [
|
1030 |
+
self.model.encode(u.unsqueeze(0),
|
1031 |
+
self.scale).float().squeeze(0)
|
1032 |
+
for u in videos
|
1033 |
+
]
|
1034 |
+
except TypeError as e:
|
1035 |
+
logging.info(e)
|
1036 |
+
return None
|
1037 |
+
|
1038 |
+
def decode(self, zs):
|
1039 |
+
try:
|
1040 |
+
if not isinstance(zs, list):
|
1041 |
+
raise TypeError("zs should be a list")
|
1042 |
+
with amp.autocast(dtype=self.dtype):
|
1043 |
+
return [
|
1044 |
+
self.model.decode(u.unsqueeze(0),
|
1045 |
+
self.scale).float().clamp_(-1,
|
1046 |
+
1).squeeze(0)
|
1047 |
+
for u in zs
|
1048 |
+
]
|
1049 |
+
except TypeError as e:
|
1050 |
+
logging.info(e)
|
1051 |
+
return None
|
wan/text2video.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import gc
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import types
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from functools import partial
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.cuda.amp as amp
|
14 |
+
import torch.distributed as dist
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
from .distributed.fsdp import shard_model
|
18 |
+
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward
|
19 |
+
from .distributed.util import get_world_size
|
20 |
+
from .modules.model import WanModel
|
21 |
+
from .modules.t5 import T5EncoderModel
|
22 |
+
from .modules.vae2_1 import Wan2_1_VAE
|
23 |
+
from .utils.fm_solvers import (
|
24 |
+
FlowDPMSolverMultistepScheduler,
|
25 |
+
get_sampling_sigmas,
|
26 |
+
retrieve_timesteps,
|
27 |
+
)
|
28 |
+
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
29 |
+
|
30 |
+
|
31 |
+
class WanT2V:
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
config,
|
36 |
+
checkpoint_dir,
|
37 |
+
device_id=0,
|
38 |
+
rank=0,
|
39 |
+
t5_fsdp=False,
|
40 |
+
dit_fsdp=False,
|
41 |
+
use_sp=False,
|
42 |
+
t5_cpu=False,
|
43 |
+
init_on_cpu=True,
|
44 |
+
convert_model_dtype=False,
|
45 |
+
):
|
46 |
+
r"""
|
47 |
+
Initializes the Wan text-to-video generation model components.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
config (EasyDict):
|
51 |
+
Object containing model parameters initialized from config.py
|
52 |
+
checkpoint_dir (`str`):
|
53 |
+
Path to directory containing model checkpoints
|
54 |
+
device_id (`int`, *optional*, defaults to 0):
|
55 |
+
Id of target GPU device
|
56 |
+
rank (`int`, *optional*, defaults to 0):
|
57 |
+
Process rank for distributed training
|
58 |
+
t5_fsdp (`bool`, *optional*, defaults to False):
|
59 |
+
Enable FSDP sharding for T5 model
|
60 |
+
dit_fsdp (`bool`, *optional*, defaults to False):
|
61 |
+
Enable FSDP sharding for DiT model
|
62 |
+
use_sp (`bool`, *optional*, defaults to False):
|
63 |
+
Enable distribution strategy of sequence parallel.
|
64 |
+
t5_cpu (`bool`, *optional*, defaults to False):
|
65 |
+
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
66 |
+
init_on_cpu (`bool`, *optional*, defaults to True):
|
67 |
+
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
|
68 |
+
convert_model_dtype (`bool`, *optional*, defaults to False):
|
69 |
+
Convert DiT model parameters dtype to 'config.param_dtype'.
|
70 |
+
Only works without FSDP.
|
71 |
+
"""
|
72 |
+
self.device = torch.device(f"cuda:{device_id}")
|
73 |
+
self.config = config
|
74 |
+
self.rank = rank
|
75 |
+
self.t5_cpu = t5_cpu
|
76 |
+
self.init_on_cpu = init_on_cpu
|
77 |
+
|
78 |
+
self.num_train_timesteps = config.num_train_timesteps
|
79 |
+
self.boundary = config.boundary
|
80 |
+
self.param_dtype = config.param_dtype
|
81 |
+
|
82 |
+
if t5_fsdp or dit_fsdp or use_sp:
|
83 |
+
self.init_on_cpu = False
|
84 |
+
|
85 |
+
shard_fn = partial(shard_model, device_id=device_id)
|
86 |
+
self.text_encoder = T5EncoderModel(
|
87 |
+
text_len=config.text_len,
|
88 |
+
dtype=config.t5_dtype,
|
89 |
+
device=torch.device('cpu'),
|
90 |
+
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
|
91 |
+
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
92 |
+
shard_fn=shard_fn if t5_fsdp else None)
|
93 |
+
|
94 |
+
self.vae_stride = config.vae_stride
|
95 |
+
self.patch_size = config.patch_size
|
96 |
+
self.vae = Wan2_1_VAE(
|
97 |
+
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
98 |
+
device=self.device)
|
99 |
+
|
100 |
+
logging.info(f"Creating WanModel from {checkpoint_dir}")
|
101 |
+
self.low_noise_model = WanModel.from_pretrained(
|
102 |
+
checkpoint_dir, subfolder=config.low_noise_checkpoint)
|
103 |
+
self.low_noise_model = self._configure_model(
|
104 |
+
model=self.low_noise_model,
|
105 |
+
use_sp=use_sp,
|
106 |
+
dit_fsdp=dit_fsdp,
|
107 |
+
shard_fn=shard_fn,
|
108 |
+
convert_model_dtype=convert_model_dtype)
|
109 |
+
|
110 |
+
self.high_noise_model = WanModel.from_pretrained(
|
111 |
+
checkpoint_dir, subfolder=config.high_noise_checkpoint)
|
112 |
+
self.high_noise_model = self._configure_model(
|
113 |
+
model=self.high_noise_model,
|
114 |
+
use_sp=use_sp,
|
115 |
+
dit_fsdp=dit_fsdp,
|
116 |
+
shard_fn=shard_fn,
|
117 |
+
convert_model_dtype=convert_model_dtype)
|
118 |
+
if use_sp:
|
119 |
+
self.sp_size = get_world_size()
|
120 |
+
else:
|
121 |
+
self.sp_size = 1
|
122 |
+
|
123 |
+
self.sample_neg_prompt = config.sample_neg_prompt
|
124 |
+
|
125 |
+
def _configure_model(self, model, use_sp, dit_fsdp, shard_fn,
|
126 |
+
convert_model_dtype):
|
127 |
+
"""
|
128 |
+
Configures a model object. This includes setting evaluation modes,
|
129 |
+
applying distributed parallel strategy, and handling device placement.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
model (torch.nn.Module):
|
133 |
+
The model instance to configure.
|
134 |
+
use_sp (`bool`):
|
135 |
+
Enable distribution strategy of sequence parallel.
|
136 |
+
dit_fsdp (`bool`):
|
137 |
+
Enable FSDP sharding for DiT model.
|
138 |
+
shard_fn (callable):
|
139 |
+
The function to apply FSDP sharding.
|
140 |
+
convert_model_dtype (`bool`):
|
141 |
+
Convert DiT model parameters dtype to 'config.param_dtype'.
|
142 |
+
Only works without FSDP.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
torch.nn.Module:
|
146 |
+
The configured model.
|
147 |
+
"""
|
148 |
+
model.eval().requires_grad_(False)
|
149 |
+
|
150 |
+
if use_sp:
|
151 |
+
for block in model.blocks:
|
152 |
+
block.self_attn.forward = types.MethodType(
|
153 |
+
sp_attn_forward, block.self_attn)
|
154 |
+
model.forward = types.MethodType(sp_dit_forward, model)
|
155 |
+
|
156 |
+
if dist.is_initialized():
|
157 |
+
dist.barrier()
|
158 |
+
|
159 |
+
if dit_fsdp:
|
160 |
+
model = shard_fn(model)
|
161 |
+
else:
|
162 |
+
if convert_model_dtype:
|
163 |
+
model.to(self.param_dtype)
|
164 |
+
if not self.init_on_cpu:
|
165 |
+
model.to(self.device)
|
166 |
+
|
167 |
+
return model
|
168 |
+
|
169 |
+
def _prepare_model_for_timestep(self, t, boundary, offload_model):
|
170 |
+
r"""
|
171 |
+
Prepares and returns the required model for the current timestep.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
t (torch.Tensor):
|
175 |
+
current timestep.
|
176 |
+
boundary (`int`):
|
177 |
+
The timestep threshold. If `t` is at or above this value,
|
178 |
+
the `high_noise_model` is considered as the required model.
|
179 |
+
offload_model (`bool`):
|
180 |
+
A flag intended to control the offloading behavior.
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
torch.nn.Module:
|
184 |
+
The active model on the target device for the current timestep.
|
185 |
+
"""
|
186 |
+
if t.item() >= boundary:
|
187 |
+
required_model_name = 'high_noise_model'
|
188 |
+
offload_model_name = 'low_noise_model'
|
189 |
+
else:
|
190 |
+
required_model_name = 'low_noise_model'
|
191 |
+
offload_model_name = 'high_noise_model'
|
192 |
+
if offload_model or self.init_on_cpu:
|
193 |
+
if next(getattr(
|
194 |
+
self,
|
195 |
+
offload_model_name).parameters()).device.type == 'cuda':
|
196 |
+
getattr(self, offload_model_name).to('cpu')
|
197 |
+
if next(getattr(
|
198 |
+
self,
|
199 |
+
required_model_name).parameters()).device.type == 'cpu':
|
200 |
+
getattr(self, required_model_name).to(self.device)
|
201 |
+
return getattr(self, required_model_name)
|
202 |
+
|
203 |
+
def generate(self,
|
204 |
+
input_prompt,
|
205 |
+
size=(1280, 720),
|
206 |
+
frame_num=81,
|
207 |
+
shift=5.0,
|
208 |
+
sample_solver='unipc',
|
209 |
+
sampling_steps=50,
|
210 |
+
guide_scale=5.0,
|
211 |
+
n_prompt="",
|
212 |
+
seed=-1,
|
213 |
+
offload_model=True):
|
214 |
+
r"""
|
215 |
+
Generates video frames from text prompt using diffusion process.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
input_prompt (`str`):
|
219 |
+
Text prompt for content generation
|
220 |
+
size (`tuple[int]`, *optional*, defaults to (1280,720)):
|
221 |
+
Controls video resolution, (width,height).
|
222 |
+
frame_num (`int`, *optional*, defaults to 81):
|
223 |
+
How many frames to sample from a video. The number should be 4n+1
|
224 |
+
shift (`float`, *optional*, defaults to 5.0):
|
225 |
+
Noise schedule shift parameter. Affects temporal dynamics
|
226 |
+
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
227 |
+
Solver used to sample the video.
|
228 |
+
sampling_steps (`int`, *optional*, defaults to 50):
|
229 |
+
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
230 |
+
guide_scale (`float` or tuple[`float`], *optional*, defaults 5.0):
|
231 |
+
Classifier-free guidance scale. Controls prompt adherence vs. creativity.
|
232 |
+
If tuple, the first guide_scale will be used for low noise model and
|
233 |
+
the second guide_scale will be used for high noise model.
|
234 |
+
n_prompt (`str`, *optional*, defaults to ""):
|
235 |
+
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
236 |
+
seed (`int`, *optional*, defaults to -1):
|
237 |
+
Random seed for noise generation. If -1, use random seed.
|
238 |
+
offload_model (`bool`, *optional*, defaults to True):
|
239 |
+
If True, offloads models to CPU during generation to save VRAM
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
torch.Tensor:
|
243 |
+
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
244 |
+
- C: Color channels (3 for RGB)
|
245 |
+
- N: Number of frames (81)
|
246 |
+
- H: Frame height (from size)
|
247 |
+
- W: Frame width from size)
|
248 |
+
"""
|
249 |
+
# preprocess
|
250 |
+
guide_scale = (guide_scale, guide_scale) if isinstance(
|
251 |
+
guide_scale, float) else guide_scale
|
252 |
+
F = frame_num
|
253 |
+
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
254 |
+
size[1] // self.vae_stride[1],
|
255 |
+
size[0] // self.vae_stride[2])
|
256 |
+
|
257 |
+
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
258 |
+
(self.patch_size[1] * self.patch_size[2]) *
|
259 |
+
target_shape[1] / self.sp_size) * self.sp_size
|
260 |
+
|
261 |
+
if n_prompt == "":
|
262 |
+
n_prompt = self.sample_neg_prompt
|
263 |
+
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
264 |
+
seed_g = torch.Generator(device=self.device)
|
265 |
+
seed_g.manual_seed(seed)
|
266 |
+
|
267 |
+
if not self.t5_cpu:
|
268 |
+
self.text_encoder.model.to(self.device)
|
269 |
+
context = self.text_encoder([input_prompt], self.device)
|
270 |
+
context_null = self.text_encoder([n_prompt], self.device)
|
271 |
+
if offload_model:
|
272 |
+
self.text_encoder.model.cpu()
|
273 |
+
else:
|
274 |
+
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
275 |
+
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
276 |
+
context = [t.to(self.device) for t in context]
|
277 |
+
context_null = [t.to(self.device) for t in context_null]
|
278 |
+
|
279 |
+
noise = [
|
280 |
+
torch.randn(
|
281 |
+
target_shape[0],
|
282 |
+
target_shape[1],
|
283 |
+
target_shape[2],
|
284 |
+
target_shape[3],
|
285 |
+
dtype=torch.float32,
|
286 |
+
device=self.device,
|
287 |
+
generator=seed_g)
|
288 |
+
]
|
289 |
+
|
290 |
+
@contextmanager
|
291 |
+
def noop_no_sync():
|
292 |
+
yield
|
293 |
+
|
294 |
+
no_sync_low_noise = getattr(self.low_noise_model, 'no_sync',
|
295 |
+
noop_no_sync)
|
296 |
+
no_sync_high_noise = getattr(self.high_noise_model, 'no_sync',
|
297 |
+
noop_no_sync)
|
298 |
+
|
299 |
+
# evaluation mode
|
300 |
+
with (
|
301 |
+
torch.amp.autocast('cuda', dtype=self.param_dtype),
|
302 |
+
torch.no_grad(),
|
303 |
+
no_sync_low_noise(),
|
304 |
+
no_sync_high_noise(),
|
305 |
+
):
|
306 |
+
boundary = self.boundary * self.num_train_timesteps
|
307 |
+
|
308 |
+
if sample_solver == 'unipc':
|
309 |
+
sample_scheduler = FlowUniPCMultistepScheduler(
|
310 |
+
num_train_timesteps=self.num_train_timesteps,
|
311 |
+
shift=1,
|
312 |
+
use_dynamic_shifting=False)
|
313 |
+
sample_scheduler.set_timesteps(
|
314 |
+
sampling_steps, device=self.device, shift=shift)
|
315 |
+
timesteps = sample_scheduler.timesteps
|
316 |
+
elif sample_solver == 'dpm++':
|
317 |
+
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
318 |
+
num_train_timesteps=self.num_train_timesteps,
|
319 |
+
shift=1,
|
320 |
+
use_dynamic_shifting=False)
|
321 |
+
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
322 |
+
timesteps, _ = retrieve_timesteps(
|
323 |
+
sample_scheduler,
|
324 |
+
device=self.device,
|
325 |
+
sigmas=sampling_sigmas)
|
326 |
+
else:
|
327 |
+
raise NotImplementedError("Unsupported solver.")
|
328 |
+
|
329 |
+
# sample videos
|
330 |
+
latents = noise
|
331 |
+
|
332 |
+
arg_c = {'context': context, 'seq_len': seq_len}
|
333 |
+
arg_null = {'context': context_null, 'seq_len': seq_len}
|
334 |
+
|
335 |
+
for _, t in enumerate(tqdm(timesteps)):
|
336 |
+
latent_model_input = latents
|
337 |
+
timestep = [t]
|
338 |
+
|
339 |
+
timestep = torch.stack(timestep)
|
340 |
+
|
341 |
+
model = self._prepare_model_for_timestep(
|
342 |
+
t, boundary, offload_model)
|
343 |
+
sample_guide_scale = guide_scale[1] if t.item(
|
344 |
+
) >= boundary else guide_scale[0]
|
345 |
+
|
346 |
+
noise_pred_cond = model(
|
347 |
+
latent_model_input, t=timestep, **arg_c)[0]
|
348 |
+
noise_pred_uncond = model(
|
349 |
+
latent_model_input, t=timestep, **arg_null)[0]
|
350 |
+
|
351 |
+
noise_pred = noise_pred_uncond + sample_guide_scale * (
|
352 |
+
noise_pred_cond - noise_pred_uncond)
|
353 |
+
|
354 |
+
temp_x0 = sample_scheduler.step(
|
355 |
+
noise_pred.unsqueeze(0),
|
356 |
+
t,
|
357 |
+
latents[0].unsqueeze(0),
|
358 |
+
return_dict=False,
|
359 |
+
generator=seed_g)[0]
|
360 |
+
latents = [temp_x0.squeeze(0)]
|
361 |
+
|
362 |
+
x0 = latents
|
363 |
+
if offload_model:
|
364 |
+
self.low_noise_model.cpu()
|
365 |
+
self.high_noise_model.cpu()
|
366 |
+
torch.cuda.empty_cache()
|
367 |
+
if self.rank == 0:
|
368 |
+
videos = self.vae.decode(x0)
|
369 |
+
|
370 |
+
del noise, latents
|
371 |
+
del sample_scheduler
|
372 |
+
if offload_model:
|
373 |
+
gc.collect()
|
374 |
+
torch.cuda.synchronize()
|
375 |
+
if dist.is_initialized():
|
376 |
+
dist.barrier()
|
377 |
+
|
378 |
+
return videos[0] if self.rank == 0 else None
|
wan/textimage2video.py
ADDED
@@ -0,0 +1,619 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
import gc
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import types
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from functools import partial
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.cuda.amp as amp
|
14 |
+
import torch.distributed as dist
|
15 |
+
import torchvision.transforms.functional as TF
|
16 |
+
from PIL import Image
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
from .distributed.fsdp import shard_model
|
20 |
+
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward
|
21 |
+
from .distributed.util import get_world_size
|
22 |
+
from .modules.model import WanModel
|
23 |
+
from .modules.t5 import T5EncoderModel
|
24 |
+
from .modules.vae2_2 import Wan2_2_VAE
|
25 |
+
from .utils.fm_solvers import (
|
26 |
+
FlowDPMSolverMultistepScheduler,
|
27 |
+
get_sampling_sigmas,
|
28 |
+
retrieve_timesteps,
|
29 |
+
)
|
30 |
+
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
31 |
+
from .utils.utils import best_output_size, masks_like
|
32 |
+
|
33 |
+
|
34 |
+
class WanTI2V:
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
config,
|
39 |
+
checkpoint_dir,
|
40 |
+
device_id=0,
|
41 |
+
rank=0,
|
42 |
+
t5_fsdp=False,
|
43 |
+
dit_fsdp=False,
|
44 |
+
use_sp=False,
|
45 |
+
t5_cpu=False,
|
46 |
+
init_on_cpu=True,
|
47 |
+
convert_model_dtype=False,
|
48 |
+
):
|
49 |
+
r"""
|
50 |
+
Initializes the Wan text-to-video generation model components.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
config (EasyDict):
|
54 |
+
Object containing model parameters initialized from config.py
|
55 |
+
checkpoint_dir (`str`):
|
56 |
+
Path to directory containing model checkpoints
|
57 |
+
device_id (`int`, *optional*, defaults to 0):
|
58 |
+
Id of target GPU device
|
59 |
+
rank (`int`, *optional*, defaults to 0):
|
60 |
+
Process rank for distributed training
|
61 |
+
t5_fsdp (`bool`, *optional*, defaults to False):
|
62 |
+
Enable FSDP sharding for T5 model
|
63 |
+
dit_fsdp (`bool`, *optional*, defaults to False):
|
64 |
+
Enable FSDP sharding for DiT model
|
65 |
+
use_sp (`bool`, *optional*, defaults to False):
|
66 |
+
Enable distribution strategy of sequence parallel.
|
67 |
+
t5_cpu (`bool`, *optional*, defaults to False):
|
68 |
+
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
69 |
+
init_on_cpu (`bool`, *optional*, defaults to True):
|
70 |
+
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
|
71 |
+
convert_model_dtype (`bool`, *optional*, defaults to False):
|
72 |
+
Convert DiT model parameters dtype to 'config.param_dtype'.
|
73 |
+
Only works without FSDP.
|
74 |
+
"""
|
75 |
+
self.device = torch.device(f"cuda:{device_id}")
|
76 |
+
self.config = config
|
77 |
+
self.rank = rank
|
78 |
+
self.t5_cpu = t5_cpu
|
79 |
+
self.init_on_cpu = init_on_cpu
|
80 |
+
|
81 |
+
self.num_train_timesteps = config.num_train_timesteps
|
82 |
+
self.param_dtype = config.param_dtype
|
83 |
+
|
84 |
+
if t5_fsdp or dit_fsdp or use_sp:
|
85 |
+
self.init_on_cpu = False
|
86 |
+
|
87 |
+
shard_fn = partial(shard_model, device_id=device_id)
|
88 |
+
self.text_encoder = T5EncoderModel(
|
89 |
+
text_len=config.text_len,
|
90 |
+
dtype=config.t5_dtype,
|
91 |
+
device=torch.device('cpu'),
|
92 |
+
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
|
93 |
+
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
94 |
+
shard_fn=shard_fn if t5_fsdp else None)
|
95 |
+
|
96 |
+
self.vae_stride = config.vae_stride
|
97 |
+
self.patch_size = config.patch_size
|
98 |
+
self.vae = Wan2_2_VAE(
|
99 |
+
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
100 |
+
device=self.device)
|
101 |
+
|
102 |
+
logging.info(f"Creating WanModel from {checkpoint_dir}")
|
103 |
+
self.model = WanModel.from_pretrained(checkpoint_dir)
|
104 |
+
self.model = self._configure_model(
|
105 |
+
model=self.model,
|
106 |
+
use_sp=use_sp,
|
107 |
+
dit_fsdp=dit_fsdp,
|
108 |
+
shard_fn=shard_fn,
|
109 |
+
convert_model_dtype=convert_model_dtype)
|
110 |
+
|
111 |
+
if use_sp:
|
112 |
+
self.sp_size = get_world_size()
|
113 |
+
else:
|
114 |
+
self.sp_size = 1
|
115 |
+
|
116 |
+
self.sample_neg_prompt = config.sample_neg_prompt
|
117 |
+
|
118 |
+
def _configure_model(self, model, use_sp, dit_fsdp, shard_fn,
|
119 |
+
convert_model_dtype):
|
120 |
+
"""
|
121 |
+
Configures a model object. This includes setting evaluation modes,
|
122 |
+
applying distributed parallel strategy, and handling device placement.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
model (torch.nn.Module):
|
126 |
+
The model instance to configure.
|
127 |
+
use_sp (`bool`):
|
128 |
+
Enable distribution strategy of sequence parallel.
|
129 |
+
dit_fsdp (`bool`):
|
130 |
+
Enable FSDP sharding for DiT model.
|
131 |
+
shard_fn (callable):
|
132 |
+
The function to apply FSDP sharding.
|
133 |
+
convert_model_dtype (`bool`):
|
134 |
+
Convert DiT model parameters dtype to 'config.param_dtype'.
|
135 |
+
Only works without FSDP.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
torch.nn.Module:
|
139 |
+
The configured model.
|
140 |
+
"""
|
141 |
+
model.eval().requires_grad_(False)
|
142 |
+
|
143 |
+
if use_sp:
|
144 |
+
for block in model.blocks:
|
145 |
+
block.self_attn.forward = types.MethodType(
|
146 |
+
sp_attn_forward, block.self_attn)
|
147 |
+
model.forward = types.MethodType(sp_dit_forward, model)
|
148 |
+
|
149 |
+
if dist.is_initialized():
|
150 |
+
dist.barrier()
|
151 |
+
|
152 |
+
if dit_fsdp:
|
153 |
+
model = shard_fn(model)
|
154 |
+
else:
|
155 |
+
if convert_model_dtype:
|
156 |
+
model.to(self.param_dtype)
|
157 |
+
if not self.init_on_cpu:
|
158 |
+
model.to(self.device)
|
159 |
+
|
160 |
+
return model
|
161 |
+
|
162 |
+
def generate(self,
|
163 |
+
input_prompt,
|
164 |
+
img=None,
|
165 |
+
size=(1280, 704),
|
166 |
+
max_area=704 * 1280,
|
167 |
+
frame_num=81,
|
168 |
+
shift=5.0,
|
169 |
+
sample_solver='unipc',
|
170 |
+
sampling_steps=50,
|
171 |
+
guide_scale=5.0,
|
172 |
+
n_prompt="",
|
173 |
+
seed=-1,
|
174 |
+
offload_model=True):
|
175 |
+
r"""
|
176 |
+
Generates video frames from text prompt using diffusion process.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
input_prompt (`str`):
|
180 |
+
Text prompt for content generation
|
181 |
+
img (PIL.Image.Image):
|
182 |
+
Input image tensor. Shape: [3, H, W]
|
183 |
+
size (`tuple[int]`, *optional*, defaults to (1280,704)):
|
184 |
+
Controls video resolution, (width,height).
|
185 |
+
max_area (`int`, *optional*, defaults to 704*1280):
|
186 |
+
Maximum pixel area for latent space calculation. Controls video resolution scaling
|
187 |
+
frame_num (`int`, *optional*, defaults to 81):
|
188 |
+
How many frames to sample from a video. The number should be 4n+1
|
189 |
+
shift (`float`, *optional*, defaults to 5.0):
|
190 |
+
Noise schedule shift parameter. Affects temporal dynamics
|
191 |
+
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
192 |
+
Solver used to sample the video.
|
193 |
+
sampling_steps (`int`, *optional*, defaults to 50):
|
194 |
+
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
195 |
+
guide_scale (`float`, *optional*, defaults 5.0):
|
196 |
+
Classifier-free guidance scale. Controls prompt adherence vs. creativity.
|
197 |
+
n_prompt (`str`, *optional*, defaults to ""):
|
198 |
+
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
199 |
+
seed (`int`, *optional*, defaults to -1):
|
200 |
+
Random seed for noise generation. If -1, use random seed.
|
201 |
+
offload_model (`bool`, *optional*, defaults to True):
|
202 |
+
If True, offloads models to CPU during generation to save VRAM
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
torch.Tensor:
|
206 |
+
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
207 |
+
- C: Color channels (3 for RGB)
|
208 |
+
- N: Number of frames (81)
|
209 |
+
- H: Frame height (from size)
|
210 |
+
- W: Frame width from size)
|
211 |
+
"""
|
212 |
+
# i2v
|
213 |
+
if img is not None:
|
214 |
+
return self.i2v(
|
215 |
+
input_prompt=input_prompt,
|
216 |
+
img=img,
|
217 |
+
max_area=max_area,
|
218 |
+
frame_num=frame_num,
|
219 |
+
shift=shift,
|
220 |
+
sample_solver=sample_solver,
|
221 |
+
sampling_steps=sampling_steps,
|
222 |
+
guide_scale=guide_scale,
|
223 |
+
n_prompt=n_prompt,
|
224 |
+
seed=seed,
|
225 |
+
offload_model=offload_model)
|
226 |
+
# t2v
|
227 |
+
return self.t2v(
|
228 |
+
input_prompt=input_prompt,
|
229 |
+
size=size,
|
230 |
+
frame_num=frame_num,
|
231 |
+
shift=shift,
|
232 |
+
sample_solver=sample_solver,
|
233 |
+
sampling_steps=sampling_steps,
|
234 |
+
guide_scale=guide_scale,
|
235 |
+
n_prompt=n_prompt,
|
236 |
+
seed=seed,
|
237 |
+
offload_model=offload_model)
|
238 |
+
|
239 |
+
def t2v(self,
|
240 |
+
input_prompt,
|
241 |
+
size=(1280, 704),
|
242 |
+
frame_num=121,
|
243 |
+
shift=5.0,
|
244 |
+
sample_solver='unipc',
|
245 |
+
sampling_steps=50,
|
246 |
+
guide_scale=5.0,
|
247 |
+
n_prompt="",
|
248 |
+
seed=-1,
|
249 |
+
offload_model=True):
|
250 |
+
r"""
|
251 |
+
Generates video frames from text prompt using diffusion process.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
input_prompt (`str`):
|
255 |
+
Text prompt for content generation
|
256 |
+
size (`tuple[int]`, *optional*, defaults to (1280,704)):
|
257 |
+
Controls video resolution, (width,height).
|
258 |
+
frame_num (`int`, *optional*, defaults to 121):
|
259 |
+
How many frames to sample from a video. The number should be 4n+1
|
260 |
+
shift (`float`, *optional*, defaults to 5.0):
|
261 |
+
Noise schedule shift parameter. Affects temporal dynamics
|
262 |
+
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
263 |
+
Solver used to sample the video.
|
264 |
+
sampling_steps (`int`, *optional*, defaults to 50):
|
265 |
+
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
266 |
+
guide_scale (`float`, *optional*, defaults 5.0):
|
267 |
+
Classifier-free guidance scale. Controls prompt adherence vs. creativity.
|
268 |
+
n_prompt (`str`, *optional*, defaults to ""):
|
269 |
+
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
270 |
+
seed (`int`, *optional*, defaults to -1):
|
271 |
+
Random seed for noise generation. If -1, use random seed.
|
272 |
+
offload_model (`bool`, *optional*, defaults to True):
|
273 |
+
If True, offloads models to CPU during generation to save VRAM
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
torch.Tensor:
|
277 |
+
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
278 |
+
- C: Color channels (3 for RGB)
|
279 |
+
- N: Number of frames (81)
|
280 |
+
- H: Frame height (from size)
|
281 |
+
- W: Frame width from size)
|
282 |
+
"""
|
283 |
+
# preprocess
|
284 |
+
F = frame_num
|
285 |
+
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
286 |
+
size[1] // self.vae_stride[1],
|
287 |
+
size[0] // self.vae_stride[2])
|
288 |
+
|
289 |
+
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
290 |
+
(self.patch_size[1] * self.patch_size[2]) *
|
291 |
+
target_shape[1] / self.sp_size) * self.sp_size
|
292 |
+
|
293 |
+
if n_prompt == "":
|
294 |
+
n_prompt = self.sample_neg_prompt
|
295 |
+
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
296 |
+
seed_g = torch.Generator(device=self.device)
|
297 |
+
seed_g.manual_seed(seed)
|
298 |
+
|
299 |
+
if not self.t5_cpu:
|
300 |
+
self.text_encoder.model.to(self.device)
|
301 |
+
context = self.text_encoder([input_prompt], self.device)
|
302 |
+
context_null = self.text_encoder([n_prompt], self.device)
|
303 |
+
if offload_model:
|
304 |
+
self.text_encoder.model.cpu()
|
305 |
+
else:
|
306 |
+
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
307 |
+
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
308 |
+
context = [t.to(self.device) for t in context]
|
309 |
+
context_null = [t.to(self.device) for t in context_null]
|
310 |
+
|
311 |
+
noise = [
|
312 |
+
torch.randn(
|
313 |
+
target_shape[0],
|
314 |
+
target_shape[1],
|
315 |
+
target_shape[2],
|
316 |
+
target_shape[3],
|
317 |
+
dtype=torch.float32,
|
318 |
+
device=self.device,
|
319 |
+
generator=seed_g)
|
320 |
+
]
|
321 |
+
|
322 |
+
@contextmanager
|
323 |
+
def noop_no_sync():
|
324 |
+
yield
|
325 |
+
|
326 |
+
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
327 |
+
|
328 |
+
# evaluation mode
|
329 |
+
with (
|
330 |
+
torch.amp.autocast('cuda', dtype=self.param_dtype),
|
331 |
+
torch.no_grad(),
|
332 |
+
no_sync(),
|
333 |
+
):
|
334 |
+
|
335 |
+
if sample_solver == 'unipc':
|
336 |
+
sample_scheduler = FlowUniPCMultistepScheduler(
|
337 |
+
num_train_timesteps=self.num_train_timesteps,
|
338 |
+
shift=1,
|
339 |
+
use_dynamic_shifting=False)
|
340 |
+
sample_scheduler.set_timesteps(
|
341 |
+
sampling_steps, device=self.device, shift=shift)
|
342 |
+
timesteps = sample_scheduler.timesteps
|
343 |
+
elif sample_solver == 'dpm++':
|
344 |
+
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
345 |
+
num_train_timesteps=self.num_train_timesteps,
|
346 |
+
shift=1,
|
347 |
+
use_dynamic_shifting=False)
|
348 |
+
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
349 |
+
timesteps, _ = retrieve_timesteps(
|
350 |
+
sample_scheduler,
|
351 |
+
device=self.device,
|
352 |
+
sigmas=sampling_sigmas)
|
353 |
+
else:
|
354 |
+
raise NotImplementedError("Unsupported solver.")
|
355 |
+
|
356 |
+
# sample videos
|
357 |
+
latents = noise
|
358 |
+
mask1, mask2 = masks_like(noise, zero=False)
|
359 |
+
|
360 |
+
arg_c = {'context': context, 'seq_len': seq_len}
|
361 |
+
arg_null = {'context': context_null, 'seq_len': seq_len}
|
362 |
+
|
363 |
+
if offload_model or self.init_on_cpu:
|
364 |
+
self.model.to(self.device)
|
365 |
+
torch.cuda.empty_cache()
|
366 |
+
|
367 |
+
for _, t in enumerate(tqdm(timesteps)):
|
368 |
+
latent_model_input = latents
|
369 |
+
timestep = [t]
|
370 |
+
|
371 |
+
timestep = torch.stack(timestep)
|
372 |
+
|
373 |
+
temp_ts = (mask2[0][0][:, ::2, ::2] * timestep).flatten()
|
374 |
+
temp_ts = torch.cat([
|
375 |
+
temp_ts,
|
376 |
+
temp_ts.new_ones(seq_len - temp_ts.size(0)) * timestep
|
377 |
+
])
|
378 |
+
timestep = temp_ts.unsqueeze(0)
|
379 |
+
|
380 |
+
noise_pred_cond = self.model(
|
381 |
+
latent_model_input, t=timestep, **arg_c)[0]
|
382 |
+
noise_pred_uncond = self.model(
|
383 |
+
latent_model_input, t=timestep, **arg_null)[0]
|
384 |
+
|
385 |
+
noise_pred = noise_pred_uncond + guide_scale * (
|
386 |
+
noise_pred_cond - noise_pred_uncond)
|
387 |
+
|
388 |
+
temp_x0 = sample_scheduler.step(
|
389 |
+
noise_pred.unsqueeze(0),
|
390 |
+
t,
|
391 |
+
latents[0].unsqueeze(0),
|
392 |
+
return_dict=False,
|
393 |
+
generator=seed_g)[0]
|
394 |
+
latents = [temp_x0.squeeze(0)]
|
395 |
+
x0 = latents
|
396 |
+
if offload_model:
|
397 |
+
self.model.cpu()
|
398 |
+
torch.cuda.synchronize()
|
399 |
+
torch.cuda.empty_cache()
|
400 |
+
if self.rank == 0:
|
401 |
+
videos = self.vae.decode(x0)
|
402 |
+
|
403 |
+
del noise, latents
|
404 |
+
del sample_scheduler
|
405 |
+
if offload_model:
|
406 |
+
gc.collect()
|
407 |
+
torch.cuda.synchronize()
|
408 |
+
if dist.is_initialized():
|
409 |
+
dist.barrier()
|
410 |
+
|
411 |
+
return videos[0] if self.rank == 0 else None
|
412 |
+
|
413 |
+
def i2v(self,
|
414 |
+
input_prompt,
|
415 |
+
img,
|
416 |
+
max_area=704 * 1280,
|
417 |
+
frame_num=121,
|
418 |
+
shift=5.0,
|
419 |
+
sample_solver='unipc',
|
420 |
+
sampling_steps=40,
|
421 |
+
guide_scale=5.0,
|
422 |
+
n_prompt="",
|
423 |
+
seed=-1,
|
424 |
+
offload_model=True):
|
425 |
+
r"""
|
426 |
+
Generates video frames from input image and text prompt using diffusion process.
|
427 |
+
|
428 |
+
Args:
|
429 |
+
input_prompt (`str`):
|
430 |
+
Text prompt for content generation.
|
431 |
+
img (PIL.Image.Image):
|
432 |
+
Input image tensor. Shape: [3, H, W]
|
433 |
+
max_area (`int`, *optional*, defaults to 704*1280):
|
434 |
+
Maximum pixel area for latent space calculation. Controls video resolution scaling
|
435 |
+
frame_num (`int`, *optional*, defaults to 121):
|
436 |
+
How many frames to sample from a video. The number should be 4n+1
|
437 |
+
shift (`float`, *optional*, defaults to 5.0):
|
438 |
+
Noise schedule shift parameter. Affects temporal dynamics
|
439 |
+
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
|
440 |
+
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
441 |
+
Solver used to sample the video.
|
442 |
+
sampling_steps (`int`, *optional*, defaults to 40):
|
443 |
+
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
444 |
+
guide_scale (`float`, *optional*, defaults 5.0):
|
445 |
+
Classifier-free guidance scale. Controls prompt adherence vs. creativity.
|
446 |
+
n_prompt (`str`, *optional*, defaults to ""):
|
447 |
+
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
448 |
+
seed (`int`, *optional*, defaults to -1):
|
449 |
+
Random seed for noise generation. If -1, use random seed
|
450 |
+
offload_model (`bool`, *optional*, defaults to True):
|
451 |
+
If True, offloads models to CPU during generation to save VRAM
|
452 |
+
|
453 |
+
Returns:
|
454 |
+
torch.Tensor:
|
455 |
+
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
456 |
+
- C: Color channels (3 for RGB)
|
457 |
+
- N: Number of frames (121)
|
458 |
+
- H: Frame height (from max_area)
|
459 |
+
- W: Frame width (from max_area)
|
460 |
+
"""
|
461 |
+
# preprocess
|
462 |
+
ih, iw = img.height, img.width
|
463 |
+
dh, dw = self.patch_size[1] * self.vae_stride[1], self.patch_size[
|
464 |
+
2] * self.vae_stride[2]
|
465 |
+
ow, oh = best_output_size(iw, ih, dw, dh, max_area)
|
466 |
+
|
467 |
+
scale = max(ow / iw, oh / ih)
|
468 |
+
img = img.resize((round(iw * scale), round(ih * scale)), Image.LANCZOS)
|
469 |
+
|
470 |
+
# center-crop
|
471 |
+
x1 = (img.width - ow) // 2
|
472 |
+
y1 = (img.height - oh) // 2
|
473 |
+
img = img.crop((x1, y1, x1 + ow, y1 + oh))
|
474 |
+
assert img.width == ow and img.height == oh
|
475 |
+
|
476 |
+
# to tensor
|
477 |
+
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device).unsqueeze(1)
|
478 |
+
|
479 |
+
F = frame_num
|
480 |
+
seq_len = ((F - 1) // self.vae_stride[0] + 1) * (
|
481 |
+
oh // self.vae_stride[1]) * (ow // self.vae_stride[2]) // (
|
482 |
+
self.patch_size[1] * self.patch_size[2])
|
483 |
+
seq_len = int(math.ceil(seq_len / self.sp_size)) * self.sp_size
|
484 |
+
|
485 |
+
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
486 |
+
seed_g = torch.Generator(device=self.device)
|
487 |
+
seed_g.manual_seed(seed)
|
488 |
+
noise = torch.randn(
|
489 |
+
self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
490 |
+
oh // self.vae_stride[1],
|
491 |
+
ow // self.vae_stride[2],
|
492 |
+
dtype=torch.float32,
|
493 |
+
generator=seed_g,
|
494 |
+
device=self.device)
|
495 |
+
|
496 |
+
if n_prompt == "":
|
497 |
+
n_prompt = self.sample_neg_prompt
|
498 |
+
|
499 |
+
# preprocess
|
500 |
+
if not self.t5_cpu:
|
501 |
+
self.text_encoder.model.to(self.device)
|
502 |
+
context = self.text_encoder([input_prompt], self.device)
|
503 |
+
context_null = self.text_encoder([n_prompt], self.device)
|
504 |
+
if offload_model:
|
505 |
+
self.text_encoder.model.cpu()
|
506 |
+
else:
|
507 |
+
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
508 |
+
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
509 |
+
context = [t.to(self.device) for t in context]
|
510 |
+
context_null = [t.to(self.device) for t in context_null]
|
511 |
+
|
512 |
+
z = self.vae.encode([img])
|
513 |
+
|
514 |
+
@contextmanager
|
515 |
+
def noop_no_sync():
|
516 |
+
yield
|
517 |
+
|
518 |
+
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
519 |
+
|
520 |
+
# evaluation mode
|
521 |
+
with (
|
522 |
+
torch.amp.autocast('cuda', dtype=self.param_dtype),
|
523 |
+
torch.no_grad(),
|
524 |
+
no_sync(),
|
525 |
+
):
|
526 |
+
|
527 |
+
if sample_solver == 'unipc':
|
528 |
+
sample_scheduler = FlowUniPCMultistepScheduler(
|
529 |
+
num_train_timesteps=self.num_train_timesteps,
|
530 |
+
shift=1,
|
531 |
+
use_dynamic_shifting=False)
|
532 |
+
sample_scheduler.set_timesteps(
|
533 |
+
sampling_steps, device=self.device, shift=shift)
|
534 |
+
timesteps = sample_scheduler.timesteps
|
535 |
+
elif sample_solver == 'dpm++':
|
536 |
+
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
537 |
+
num_train_timesteps=self.num_train_timesteps,
|
538 |
+
shift=1,
|
539 |
+
use_dynamic_shifting=False)
|
540 |
+
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
541 |
+
timesteps, _ = retrieve_timesteps(
|
542 |
+
sample_scheduler,
|
543 |
+
device=self.device,
|
544 |
+
sigmas=sampling_sigmas)
|
545 |
+
else:
|
546 |
+
raise NotImplementedError("Unsupported solver.")
|
547 |
+
|
548 |
+
# sample videos
|
549 |
+
latent = noise
|
550 |
+
mask1, mask2 = masks_like([noise], zero=True)
|
551 |
+
latent = (1. - mask2[0]) * z[0] + mask2[0] * latent
|
552 |
+
|
553 |
+
arg_c = {
|
554 |
+
'context': [context[0]],
|
555 |
+
'seq_len': seq_len,
|
556 |
+
}
|
557 |
+
|
558 |
+
arg_null = {
|
559 |
+
'context': context_null,
|
560 |
+
'seq_len': seq_len,
|
561 |
+
}
|
562 |
+
|
563 |
+
if offload_model or self.init_on_cpu:
|
564 |
+
self.model.to(self.device)
|
565 |
+
torch.cuda.empty_cache()
|
566 |
+
|
567 |
+
for _, t in enumerate(tqdm(timesteps)):
|
568 |
+
latent_model_input = [latent.to(self.device)]
|
569 |
+
timestep = [t]
|
570 |
+
|
571 |
+
timestep = torch.stack(timestep).to(self.device)
|
572 |
+
|
573 |
+
temp_ts = (mask2[0][0][:, ::2, ::2] * timestep).flatten()
|
574 |
+
temp_ts = torch.cat([
|
575 |
+
temp_ts,
|
576 |
+
temp_ts.new_ones(seq_len - temp_ts.size(0)) * timestep
|
577 |
+
])
|
578 |
+
timestep = temp_ts.unsqueeze(0)
|
579 |
+
|
580 |
+
noise_pred_cond = self.model(
|
581 |
+
latent_model_input, t=timestep, **arg_c)[0]
|
582 |
+
if offload_model:
|
583 |
+
torch.cuda.empty_cache()
|
584 |
+
noise_pred_uncond = self.model(
|
585 |
+
latent_model_input, t=timestep, **arg_null)[0]
|
586 |
+
if offload_model:
|
587 |
+
torch.cuda.empty_cache()
|
588 |
+
noise_pred = noise_pred_uncond + guide_scale * (
|
589 |
+
noise_pred_cond - noise_pred_uncond)
|
590 |
+
|
591 |
+
temp_x0 = sample_scheduler.step(
|
592 |
+
noise_pred.unsqueeze(0),
|
593 |
+
t,
|
594 |
+
latent.unsqueeze(0),
|
595 |
+
return_dict=False,
|
596 |
+
generator=seed_g)[0]
|
597 |
+
latent = temp_x0.squeeze(0)
|
598 |
+
latent = (1. - mask2[0]) * z[0] + mask2[0] * latent
|
599 |
+
|
600 |
+
x0 = [latent]
|
601 |
+
del latent_model_input, timestep
|
602 |
+
|
603 |
+
if offload_model:
|
604 |
+
self.model.cpu()
|
605 |
+
torch.cuda.synchronize()
|
606 |
+
torch.cuda.empty_cache()
|
607 |
+
|
608 |
+
if self.rank == 0:
|
609 |
+
videos = self.vae.decode(x0)
|
610 |
+
|
611 |
+
del noise, latent, x0
|
612 |
+
del sample_scheduler
|
613 |
+
if offload_model:
|
614 |
+
gc.collect()
|
615 |
+
torch.cuda.synchronize()
|
616 |
+
if dist.is_initialized():
|
617 |
+
dist.barrier()
|
618 |
+
|
619 |
+
return videos[0] if self.rank == 0 else None
|
wan/utils/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
2 |
+
from .fm_solvers import (
|
3 |
+
FlowDPMSolverMultistepScheduler,
|
4 |
+
get_sampling_sigmas,
|
5 |
+
retrieve_timesteps,
|
6 |
+
)
|
7 |
+
from .fm_solvers_unipc import FlowUniPCMultistepScheduler
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps',
|
11 |
+
'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler'
|
12 |
+
]
|
wan/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (401 Bytes). View file
|
|
wan/utils/__pycache__/fm_solvers.cpython-310.pyc
ADDED
Binary file (26.1 kB). View file
|
|