Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Import TinyLLaVA modules (use local copy!)
|
8 |
+
from tinyllava.model.builder import load_pretrained_model
|
9 |
+
from tinyllava.utils import disable_torch_init
|
10 |
+
from tinyllava.mm_utils import (
|
11 |
+
process_images,
|
12 |
+
tokenizer_image_token,
|
13 |
+
get_model_name_from_path
|
14 |
+
)
|
15 |
+
|
16 |
+
# Disable torch default init for speed
|
17 |
+
disable_torch_init()
|
18 |
+
|
19 |
+
# Load TinyLLaVA 3.1B
|
20 |
+
MODEL_PATH = "bczhou/TinyLLaVA-3.1B"
|
21 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
22 |
+
model_path=MODEL_PATH,
|
23 |
+
model_base=None,
|
24 |
+
model_name="TinyLLaVA-3.1B"
|
25 |
+
)
|
26 |
+
|
27 |
+
device = torch.device("cpu")
|
28 |
+
model.to(device)
|
29 |
+
|
30 |
+
# Streamlit UI
|
31 |
+
st.set_page_config(page_title="TinyLLaVA 3.1B (Streamlit)", layout="centered")
|
32 |
+
st.title("🦙 TinyLLaVA 3.1B — Vision-Language Q&A")
|
33 |
+
|
34 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
35 |
+
|
36 |
+
prompt = st.text_input("Ask a question about the image:")
|
37 |
+
|
38 |
+
if uploaded_file is not None and prompt:
|
39 |
+
image = Image.open(uploaded_file).convert("RGB")
|
40 |
+
|
41 |
+
# Process image
|
42 |
+
image_tensor = process_images([image], image_processor, model.config)
|
43 |
+
image_tensor = image_tensor.to(device)
|
44 |
+
|
45 |
+
# Process prompt
|
46 |
+
prompt_text = tokenizer_image_token(prompt, tokenizer, context_len)
|
47 |
+
inputs = tokenizer([prompt_text])
|
48 |
+
input_ids = torch.tensor(inputs.input_ids).unsqueeze(0).to(device)
|
49 |
+
|
50 |
+
# Run inference
|
51 |
+
with st.spinner("Generating answer..."):
|
52 |
+
output_ids = model.generate(
|
53 |
+
input_ids,
|
54 |
+
images=image_tensor,
|
55 |
+
do_sample=True,
|
56 |
+
temperature=0.2,
|
57 |
+
max_new_tokens=200
|
58 |
+
)
|
59 |
+
out_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
st.subheader("Answer:")
|
62 |
+
st.write(out_text)
|