Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForPreTraining | |
| import os | |
| # PaliGemma settings | |
| access_token = os.getenv('HF_TOKEN') | |
| processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-896", token=access_token) | |
| model = AutoModelForPreTraining.from_pretrained("google/paligemma-3b-pt-896", token=access_token) | |
| def response_request(image,prompt): | |
| inputs = processor(prompt, image, return_tensors="pt") | |
| output = model.generate(**inputs, max_new_tokens=100, do_sample=False) | |
| response = processor.decode(output[0], skip_special_tokens=True)[len(prompt):] | |
| return response | |
| # Interface | |
| iface = gr.Interface( | |
| fn=response_request, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Textbox(label="Prompt") | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Response") | |
| ], | |
| title="PaliGemma (google/paligemma-3b-pt-896)" | |
| ) | |
| iface.launch() | |