Spaces:
Running
Running
| """adapted from https://github.com/keithito/tacotron""" | |
| """ | |
| Cleaners are transformations that run over the input text at both training and eval time. | |
| Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" | |
| hyperparameter. Some cleaners are English-specific. You'll typically want to use: | |
| 1. "english_cleaners" for English text | |
| 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using | |
| the Unidecode library (https://pypi.python.org/pypi/Unidecode) | |
| 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update | |
| the symbols in symbols.py to match your data). | |
| """ | |
| import re | |
| from string import punctuation | |
| from functools import reduce | |
| from unidecode import unidecode | |
| from .numerical import normalize_numbers, normalize_currency | |
| from .acronyms import AcronymNormalizer | |
| from .datestime import normalize_datestime | |
| from .letters_and_numbers import normalize_letters_and_numbers | |
| from .abbreviations import normalize_abbreviations | |
| # Regular expression matching whitespace: | |
| _whitespace_re = re.compile(r"\s+") | |
| # Regular expression separating words enclosed in curly braces for cleaning | |
| _arpa_re = re.compile(r"{[^}]+}|\S+") | |
| def expand_abbreviations(text): | |
| return normalize_abbreviations(text) | |
| def expand_numbers(text): | |
| return normalize_numbers(text) | |
| def expand_currency(text): | |
| return normalize_currency(text) | |
| def expand_datestime(text): | |
| return normalize_datestime(text) | |
| def expand_letters_and_numbers(text): | |
| return normalize_letters_and_numbers(text) | |
| def lowercase(text): | |
| return text.lower() | |
| def collapse_whitespace(text): | |
| return re.sub(_whitespace_re, " ", text) | |
| def separate_acronyms(text): | |
| text = re.sub(r"([0-9]+)([a-zA-Z]+)", r"\1 \2", text) | |
| text = re.sub(r"([a-zA-Z]+)([0-9]+)", r"\1 \2", text) | |
| return text | |
| def convert_to_ascii(text): | |
| return unidecode(text) | |
| def dehyphenize_compound_words(text): | |
| text = re.sub(r"(?<=[a-zA-Z0-9])-(?=[a-zA-Z])", " ", text) | |
| return text | |
| def remove_space_before_punctuation(text): | |
| return re.sub(r"\s([{}](?:\s|$))".format(punctuation), r"\1", text) | |
| class Cleaner(object): | |
| def __init__(self, cleaner_names, phonemedict): | |
| self.cleaner_names = cleaner_names | |
| self.phonemedict = phonemedict | |
| self.acronym_normalizer = AcronymNormalizer(self.phonemedict) | |
| def __call__(self, text): | |
| for cleaner_name in self.cleaner_names: | |
| sequence_fns, word_fns = self.get_cleaner_fns(cleaner_name) | |
| for fn in sequence_fns: | |
| text = fn(text) | |
| text = [ | |
| reduce(lambda x, y: y(x), word_fns, split) if split[0] != "{" else split | |
| for split in _arpa_re.findall(text) | |
| ] | |
| text = " ".join(text) | |
| text = remove_space_before_punctuation(text) | |
| return text | |
| def get_cleaner_fns(self, cleaner_name): | |
| if cleaner_name == "basic_cleaners": | |
| sequence_fns = [lowercase, collapse_whitespace] | |
| word_fns = [] | |
| elif cleaner_name == "english_cleaners": | |
| sequence_fns = [collapse_whitespace, convert_to_ascii, lowercase] | |
| word_fns = [expand_numbers, expand_abbreviations] | |
| elif cleaner_name == "radtts_cleaners": | |
| sequence_fns = [ | |
| collapse_whitespace, | |
| expand_currency, | |
| expand_datestime, | |
| expand_letters_and_numbers, | |
| ] | |
| word_fns = [expand_numbers, expand_abbreviations] | |
| elif cleaner_name == "ukrainian_cleaners": | |
| sequence_fns = [lowercase, collapse_whitespace] | |
| word_fns = [] | |
| elif cleaner_name == "transliteration_cleaners": | |
| sequence_fns = [convert_to_ascii, lowercase, collapse_whitespace] | |
| else: | |
| raise Exception("{} cleaner not supported".format(cleaner_name)) | |
| return sequence_fns, word_fns | |