File size: 13,485 Bytes
1ef829e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')  # Use non-interactive backend for server environments
import networkx as nx
import json
import numpy as np
from loguru import logger
import os
import tempfile
from datetime import datetime

class DAGVisualizer:
    def __init__(self):
        # Configure Matplotlib to use IEEE-style parameters
        plt.rcParams.update({
            'font.family': 'DejaVu Sans',  # Use available font instead of Times New Roman
            'font.size': 10,
            'axes.linewidth': 1.2,
            'axes.labelsize': 12,
            'xtick.labelsize': 10,
            'ytick.labelsize': 10,
            'legend.fontsize': 10,
            'figure.titlesize': 14
        })
    
    def create_dag_from_tasks(self, task_data):
        """
        Create a directed graph from task data.
        
        Args:
            task_data: Dictionary containing tasks with structure like:
                {
                    "tasks": [
                        {
                            "task": "task_name",
                            "instruction_function": {
                                "name": "function_name",
                                "robot_ids": ["robot1", "robot2"],
                                "dependencies": ["dependency_task"],
                                "object_keywords": ["object1", "object2"]
                            }
                        }
                    ]
                }
        
        Returns:
            NetworkX DiGraph object
        """
        if not task_data or "tasks" not in task_data:
            logger.warning("Invalid task data structure")
            return None
        
        # Create a directed graph
        G = nx.DiGraph()
        
        # Add nodes and store mapping from task name to ID
        task_mapping = {}
        for i, task in enumerate(task_data["tasks"]):
            task_id = i + 1
            task_name = task["task"]
            task_mapping[task_name] = task_id
            
            # Add node with attributes
            G.add_node(task_id, 
                      name=task_name,
                      function=task["instruction_function"]["name"],
                      robots=task["instruction_function"].get("robot_ids", []),
                      objects=task["instruction_function"].get("object_keywords", []))
        
        # Add dependency edges
        for i, task in enumerate(task_data["tasks"]):
            task_id = i + 1
            dependencies = task["instruction_function"]["dependencies"]
            for dep in dependencies:
                if dep in task_mapping:
                    dep_id = task_mapping[dep]
                    G.add_edge(dep_id, task_id)
        
        return G
    
    def calculate_layout(self, G):
        """
        Calculate hierarchical layout for the graph based on dependencies.
        """
        if not G:
            return {}
        
        # Calculate layers based on dependencies
        layers = {}
        
        def get_layer(node_id, visited=None):
            if visited is None:
                visited = set()
            if node_id in visited:
                return 0
            visited.add(node_id)
            
            predecessors = list(G.predecessors(node_id))
            if not predecessors:
                return 0
            return max(get_layer(pred, visited.copy()) for pred in predecessors) + 1
        
        for node in G.nodes():
            layer = get_layer(node)
            layers.setdefault(layer, []).append(node)
        
        # Calculate positions by layer
        pos = {}
        layer_height = 3.0
        node_width = 4.0
        
        for layer_idx, nodes in layers.items():
            y = layer_height * (len(layers) - 1 - layer_idx)
            start_x = -(len(nodes) - 1) * node_width / 2
            for i, node in enumerate(sorted(nodes)):
                pos[node] = (start_x + i * node_width, y)
        
        return pos
    
    def create_dag_visualization(self, task_data, title="Robot Task Dependency Graph"):
        """
        Create a DAG visualization from task data and return the image path.
        
        Args:
            task_data: Task data dictionary
            title: Title for the graph
        
        Returns:
            str: Path to the generated image file
        """
        try:
            # Create graph
            G = self.create_dag_from_tasks(task_data)
            if not G or len(G.nodes()) == 0:
                logger.warning("No tasks found or invalid graph structure")
                return None
            
            # Calculate layout
            pos = self.calculate_layout(G)
            
            # Create figure
            fig, ax = plt.subplots(1, 1, figsize=(max(12, len(G.nodes()) * 2), 8))
            
            # Draw edges with arrows
            nx.draw_networkx_edges(G, pos, 
                                  edge_color='#2E86AB',
                                  arrows=True,
                                  arrowsize=20,
                                  arrowstyle='->',
                                  width=2,
                                  alpha=0.8,
                                  connectionstyle="arc3,rad=0.1")
            
            # Color nodes based on their position in the graph
            node_colors = []
            for node in G.nodes():
                if G.in_degree(node) == 0:  # Start nodes
                    node_colors.append('#F24236')
                elif G.out_degree(node) == 0:  # End nodes
                    node_colors.append('#A23B72')
                else:  # Intermediate nodes
                    node_colors.append('#F18F01')
            
            # Draw nodes
            nx.draw_networkx_nodes(G, pos,
                                  node_color=node_colors,
                                  node_size=3500,
                                  alpha=0.9,
                                  edgecolors='black',
                                  linewidths=2)
            
            # Label nodes with task IDs
            node_labels = {node: f"T{node}" for node in G.nodes()}
            nx.draw_networkx_labels(G, pos, node_labels,
                                   font_size=18,
                                   font_weight='bold',
                                   font_color='white')
            
            # Add detailed info text boxes for each task
            for i, node in enumerate(G.nodes()):
                x, y = pos[node]
                function_name = G.nodes[node]['function']
                robots = G.nodes[node]['robots']
                objects = G.nodes[node]['objects']
                
                # Create info text content
                info_text = f"Task {node}: {function_name.replace('_', ' ').title()}\n"
                if robots:
                    robot_text = ", ".join([r.replace('robot_', '').replace('_', ' ').title() for r in robots])
                    info_text += f"Robots: {robot_text}\n"
                if objects:
                    object_text = ", ".join(objects)
                    info_text += f"Objects: {object_text}"
                
                # Calculate offset based on node position to avoid overlaps
                offset_x = 2.2 if i % 2 == 0 else -2.2
                offset_y = 0.5 if i % 4 < 2 else -0.5
                
                # Choose alignment based on offset direction
                h_align = 'left' if offset_x > 0 else 'right'
                
                # Draw text box
                bbox_props = dict(boxstyle="round,pad=0.4", 
                                 facecolor='white', 
                                 edgecolor='gray',
                                 alpha=0.95,
                                 linewidth=1)
                
                ax.text(x + offset_x, y + offset_y, info_text,
                       bbox=bbox_props,
                       fontsize=12,
                       verticalalignment='center',
                       horizontalalignment=h_align,
                       weight='bold')
                
                # Draw dashed connector line from node to text box
                ax.plot([x, x + offset_x], [y, y + offset_y], 
                        linestyle='--', color='gray', alpha=0.6, linewidth=1)
            
            # Expand axis limits to fit everything
            x_vals = [coord[0] for coord in pos.values()]
            y_vals = [coord[1] for coord in pos.values()]
            ax.set_xlim(min(x_vals) - 4.0, max(x_vals) + 4.0)
            ax.set_ylim(min(y_vals) - 2.0, max(y_vals) + 2.0)
            
            # Set overall figure properties
            ax.set_title(title, fontsize=16, fontweight='bold', pad=20)
            ax.set_aspect('equal')
            ax.margins(0.2)
            ax.axis('off')
            
            # Add legend for node types - Hidden to avoid covering content
            # legend_elements = [
            #     plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='#F24236', 
            #                markersize=10, label='Start Tasks', markeredgecolor='black'),
            #     plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='#A23B72', 
            #                markersize=10, label='End Tasks', markeredgecolor='black'),
            #     plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='#F18F01', 
            #                markersize=10, label='Intermediate Tasks', markeredgecolor='black'),
            #     plt.Line2D([0], [0], color='#2E86AB', linewidth=2, label='Dependencies')
            # ]
            # ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(1.05, 1.05))
            
            # Adjust layout and save
            plt.tight_layout()
            
            # Create temporary file for saving the image
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            temp_dir = tempfile.gettempdir()
            image_path = os.path.join(temp_dir, f'dag_visualization_{timestamp}.png')
            
            plt.savefig(image_path, dpi=400, bbox_inches='tight', 
                        pad_inches=0.1, facecolor='white', edgecolor='none')
            plt.close(fig)  # Close figure to free memory
            
            logger.info(f"DAG visualization saved to: {image_path}")
            return image_path
            
        except Exception as e:
            logger.error(f"Error creating DAG visualization: {e}")
            return None
    
    def create_simplified_dag_visualization(self, task_data, title="Robot Task Graph"):
        """
        Create a simplified DAG visualization suitable for smaller displays.
        
        Args:
            task_data: Task data dictionary
            title: Title for the graph
        
        Returns:
            str: Path to the generated image file
        """
        try:
            # Create graph
            G = self.create_dag_from_tasks(task_data)
            if not G or len(G.nodes()) == 0:
                logger.warning("No tasks found or invalid graph structure")
                return None
            
            # Calculate layout
            pos = self.calculate_layout(G)
            
            # Create figure for simplified graph
            fig, ax = plt.subplots(1, 1, figsize=(10, 6))
            
            # Draw edges
            nx.draw_networkx_edges(G, pos, 
                                  edge_color='black',
                                  arrows=True,
                                  arrowsize=15,
                                  arrowstyle='->',
                                  width=1.5)
            
            # Draw nodes
            nx.draw_networkx_nodes(G, pos,
                                  node_color='lightblue',
                                  node_size=3000,
                                  edgecolors='black',
                                  linewidths=1.5)
            
            # Add node labels with simplified names
            labels = {}
            for node in G.nodes():
                function_name = G.nodes[node]['function']
                simplified_name = function_name.replace('_', ' ').title()
                if len(simplified_name) > 15:
                    simplified_name = simplified_name[:12] + "..."
                labels[node] = f"T{node}\n{simplified_name}"
            
            nx.draw_networkx_labels(G, pos, labels,
                                   font_size=11,
                                   font_weight='bold')
            
            ax.set_title(title, fontsize=14, fontweight='bold')
            ax.axis('off')
            
            # Adjust layout and save
            plt.tight_layout()
            
            # Create temporary file for saving the image
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            temp_dir = tempfile.gettempdir()
            image_path = os.path.join(temp_dir, f'simple_dag_{timestamp}.png')
            
            plt.savefig(image_path, dpi=400, bbox_inches='tight')
            plt.close(fig)  # Close figure to free memory
            
            logger.info(f"Simplified DAG visualization saved to: {image_path}")
            return image_path
            
        except Exception as e:
            logger.error(f"Error creating simplified DAG visualization: {e}")
            return None