Spaces:
Sleeping
Sleeping
File size: 9,288 Bytes
9ffc795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import gradio as gr
import spaces # Import spaces module for ZeroGPU
from huggingface_hub import login
import os
# 1) Read Secrets
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if not hf_token:
raise RuntimeError("β HUGGINGFACE_TOKEN not detected, please check Space Settings β Secrets")
# 2) Login to ensure all subsequent from_pretrained calls have proper permissions
login(hf_token)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
import warnings
import os
warnings.filterwarnings("ignore")
# Model configuration
MODEL_NAME = "meta-llama/Llama-3.1-8B"
LORA_MODEL = "YongdongWang/llama-3.1-8b-dart-qlora"
# Global variables to store model and tokenizer
model = None
tokenizer = None
model_loaded = False
def load_model_and_tokenizer():
"""Load tokenizer - executed on CPU"""
global tokenizer, model_loaded
if model_loaded:
return
print("π Loading tokenizer...")
# Load tokenizer (on CPU)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=False,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model_loaded = True
print("β
Tokenizer loaded successfully!")
@spaces.GPU(duration=60) # Request GPU for loading model at startup
def load_model_on_gpu():
"""Load model on GPU"""
global model
if model is not None:
return model
print("π Loading model on GPU...")
try:
# 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
low_cpu_mem_usage=True
)
# Load LoRA adapter
model = PeftModel.from_pretrained(
base_model,
LORA_MODEL,
torch_dtype=torch.float16
)
model.eval()
print("β
Model loaded on GPU successfully!")
return model
except Exception as load_error:
print(f"β Model loading failed: {load_error}")
raise load_error
@spaces.GPU(duration=60) # GPU inference
def generate_response_gpu(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
"""Generate response - executed on GPU"""
global model
# Ensure tokenizer is loaded
if tokenizer is None:
load_model_and_tokenizer()
# Ensure model is loaded on GPU
if model is None:
model = load_model_on_gpu()
if model is None:
return "β Model failed to load. Please check the Space logs."
try:
# Format input
formatted_prompt = f"### Human: {prompt.strip()}\n### Assistant:"
# Encode input
inputs = tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=2048
).to(model.device)
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1,
early_stopping=True,
no_repeat_ngram_size=3
)
# Decode output
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract generated part
if "### Assistant:" in response:
response = response.split("### Assistant:")[-1].strip()
elif len(response) > len(formatted_prompt):
response = response[len(formatted_prompt):].strip()
return response if response else "β No response generated. Please try again with a different prompt."
except Exception as generation_error:
return f"β Generation Error: {str(generation_error)}"
def chat_interface(message, history, max_tokens, temperature, top_p):
"""Chat interface - runs on CPU, calls GPU functions"""
if not message.strip():
return history, ""
# Initialize tokenizer (if needed)
if tokenizer is None:
load_model_and_tokenizer()
try:
# Call GPU function to generate response
response = generate_response_gpu(message, max_tokens, temperature, top_p)
history.append((message, response))
return history, ""
except Exception as chat_error:
error_msg = f"β Chat Error: {str(chat_error)}"
history.append((message, error_msg))
return history, ""
# Load tokenizer at startup
load_model_and_tokenizer()
# Create Gradio application
with gr.Blocks(
title="Robot Task Planning - Llama 3.1 8B",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px;
margin: auto;
}
"""
) as app:
gr.Markdown("""
# π€ Llama 3.1 8B - Robot Task Planning
This is a fine-tuned version of Meta's Llama 3.1 8B model specialized for **robot task planning** using QLoRA technique.
**Capabilities**: Convert natural language robot commands into structured task sequences for excavators, dump trucks, and other construction robots.
**Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
β‘ **Using ZeroGPU**: This Space uses dynamic GPU allocation (Nvidia H200). First generation might take a bit longer.
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Task Planning Results",
height=500,
show_label=True,
container=True,
bubble_full_width=False,
show_copy_button=True
)
msg = gr.Textbox(
label="Robot Command",
placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...",
lines=2,
max_lines=5,
show_label=True,
container=True
)
with gr.Row():
send_btn = gr.Button("π Generate Tasks", variant="primary", size="sm")
clear_btn = gr.Button("ποΈ Clear", variant="secondary", size="sm")
with gr.Column(scale=1):
gr.Markdown("### βοΈ Generation Settings")
max_tokens = gr.Slider(
minimum=50,
maximum=500,
value=200,
step=10,
label="Max Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Controls randomness (lower = more focused)"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold"
)
gr.Markdown("""
### π Model Status
- **Hardware**: ZeroGPU (Dynamic Nvidia H200)
- **Status**: Ready
- **Note**: First generation allocates GPU resources
""")
# Example conversations
gr.Examples(
examples=['Deploy Excavator 1 to Soil Area 1 for excavation.', 'Send Dump Truck 1 to collect material from Excavator 1, then unload at storage area.', 'Move all robots to avoid Puddle 1 after inspection.', 'Deploy multiple excavators to different soil areas simultaneously.', 'Coordinate dump trucks to transport materials from excavation site to storage.', 'Send robot to inspect rock area, then avoid with all other robots if dangerous.', 'Return all robots to start position after completing tasks.', 'Create a sequence: excavate, load, transport, unload, repeat.'],
inputs=msg,
label="π‘ Example Robot Commands"
)
# Event handling
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg]
)
send_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg]
)
clear_btn.click(
lambda: ([], ""),
outputs=[chatbot, msg]
)
if __name__ == "__main__":
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)
|