# 📝 Enhanced Editing Workflow Guide ## 🔧 Fixed Issues ### ✅ Persistent Editing Problem Solved - **Issue**: After updating DAG, editor showed empty `{"tasks": []}` on subsequent edits - **Solution**: Enhanced state management to preserve task plans across edit cycles - **Result**: Task plans now persist through the complete workflow ## 🚀 Complete Workflow ### 1️⃣ **LLM Generation Phase** ``` User Input → LLM Response → DAG Generated → Buttons Appear ``` **Buttons shown**: `📝 Edit Task Plan` + `🔒 Validate & Deploy Task Plan` ### 2️⃣ **Manual Editing Phase** (Optional) ``` Click "📝 Edit Task Plan" → JSON Editor Opens → Make Changes ``` **Buttons shown**: `🔄 Update DAG Visualization` ### 3️⃣ **DAG Update Phase** ``` Click "🔄 Update DAG Visualization" → New DAG Generated → Review Changes ``` **Buttons shown**: `🔒 Validate & Deploy Task Plan` ### 4️⃣ **Deployment Phase** ``` Click "🔒 Validate & Deploy Task Plan" → Send to ROS Topics → Confirmation ``` **Status**: `✅ Task Plan Successfully Deployed` ### 5️⃣ **Re-editing Capability** ``` Click "📝 Edit Task Plan" Again → Previous Plan Loads → Continue Editing ``` **Feature**: Deployed plans can be re-edited and updated ## 🎯 Key Features ### 🔄 **Persistent State Management** - ✅ Task plans persist across edit cycles - ✅ Deployed plans remain available for re-editing - ✅ Intelligent fallback to templates when needed - ✅ Proper error handling for malformed data ### 📋 **Smart Editor Behavior** - **With existing plan**: Shows current task JSON for editing - **After deployment**: Shows deployed plan for potential re-editing - **Empty state**: Shows example template with proper structure - **Malformed data**: Gracefully falls back to template ### 🛡️ **Error Handling** - **JSON Syntax Errors**: Shows clear error messages and keeps editor open - **Missing Fields**: Validates required structure (`tasks` field) - **Empty Tasks**: Handles empty task arrays gracefully - **State Corruption**: Recovers with template when state is invalid ## 📊 Example JSON Structure ```json { "tasks": [ { "task": "excavate_soil_from_pile", "instruction_function": { "name": "excavate_soil_from_pile", "robot_ids": ["robot_excavator_01"], "dependencies": [], "object_keywords": ["soil_pile"] } }, { "task": "transport_soil_to_pit", "instruction_function": { "name": "transport_soil_to_pit", "robot_ids": ["robot_dump_truck_01"], "dependencies": ["excavate_soil_from_pile"], "object_keywords": ["pit"] } } ] } ``` ## 🔍 Testing Commands ### Run the Application ```bash cd /root/share/QA_LLM_Module python3 main.py ``` ### Monitor ROS Topics ```bash ./monitor_topics.sh ``` ### Test Editing Workflow ```bash python3 test_persistent_editing.py ``` ## 🎉 Success Indicators ### ✅ Working Correctly When: 1. **First Edit**: LLM plan loads in editor 2. **Update DAG**: New visualization appears 3. **Deploy**: Confirmation message shows 4. **Re-edit**: Previous plan content loads (not empty template) 5. **Multiple Cycles**: Can edit → update → deploy repeatedly ### 🔧 Troubleshooting #### Problem: Editor shows empty tasks - **Cause**: State management issue - **Solution**: Fixed with enhanced persistence logic #### Problem: DAG not updating - **Cause**: JSON syntax error - **Solution**: Check error message, fix JSON, try again #### Problem: Cannot deploy - **Cause**: ROS node not initialized - **Solution**: Restart application, check ROS connection ## 🏆 Benefits 1. **Enhanced Safety**: Multiple review opportunities before deployment 2. **Flexibility**: Manual fine-tuning of LLM-generated plans 3. **Persistence**: No loss of work during editing cycles 4. **User-Friendly**: Clear status messages and error handling 5. **IEEE Compliant**: Professional terminology and workflow