--- title: DART-LLM_Task_Decomposer app_file: gradio_llm_interface.py sdk: gradio sdk_version: 5.38.0 --- # QA_LLM_Module QA_LLM_Module is a core component of the DART-LLM (Dependency-Aware Multi-Robot Task Decomposition and Execution) system. It provides an intelligent interface for parsing natural language instructions into structured, dependency-aware task sequences for multi-robot systems. The module supports multiple LLM providers including OpenAI GPT, Anthropic Claude, and LLaMA models, enabling sophisticated task decomposition with explicit handling of dependencies between subtasks. ## Features - **Multiple LLM Support**: Compatible with OpenAI GPT-4, GPT-3.5-turbo, Anthropic Claude, and LLaMA models - **Dependency-Aware Task Decomposition**: Breaks down complex tasks into subtasks with explicit dependencies - **Structured Output Format**: Generates standardized JSON output for consistent task parsing - **Real-time Processing**: Supports real-time task decomposition and execution ## Installation ## Installation You can choose one of the following ways to set up the module: ### Option 1: Install Dependencies Directly (Recommended for Linux/Mac) 1. Clone the repository and install dependencies: ```bash pip install -r requirements.txt ``` 2. Configure API keys in environment variables: ```bash export OPENAI_API_KEY="your_openai_key" export ANTHROPIC_API_KEY="your_anthropic_key" export GROQ_API_KEY="your_groq_key" ``` ### Option 2: Use Docker (Recommended for Windows) For Windows users, it is recommended to use the pre-configured Docker environment to avoid compatibility issues. 1. Clone the Docker repository: ```bash git clone https://github.com/wyd0817/DART_LLM_Docker.git ``` 2. Follow the instructions in the [DART_LLM_Docker](https://github.com/wyd0817/DART_LLM_Docker) repository to build and run the container. 3. Configure API keys in environment variables: ```bash export OPENAI_API_KEY="your_openai_key" export ANTHROPIC_API_KEY="your_anthropic_key" export GROQ_API_KEY="your_groq_key" ``` ## Usage ### Example Usage: Run the main interface with Gradio: ```bash gradio main.py ``` ### Output Format: The module processes natural language instructions into structured JSON output following this format: ```json { "instruction_function": { "name": "", "dependencies": ["", "", "...", ""] }, "object_keywords": ["", "", "...", ""], ... } ``` ## Configuration The module can be configured through: - `config.py`: Model settings and API configurations - `prompts/`: Directory containing prompt templates - `llm_request_handler.py`: Core logic for handling LLM requests