Spaces:
Runtime error
Runtime error
Create Llama 3.1 8B fine-tuned chat space
Browse files- README.md +39 -6
- app.py +218 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -1,12 +1,45 @@
|
|
1 |
---
|
2 |
-
title: Robot Task Planning
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Robot Task Planning - Llama 3.1 8B
|
3 |
+
emoji: 🤖
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: llama3.1
|
11 |
---
|
12 |
|
13 |
+
# Robot Task Planning - Llama 3.1 8B
|
14 |
+
|
15 |
+
This Space demonstrates a fine-tuned version of Meta's Llama 3.1 8B model specialized for **robot task planning** using QLoRA technique.
|
16 |
+
|
17 |
+
The model converts natural language commands into structured task sequences for construction robots like excavators and dump trucks.
|
18 |
+
|
19 |
+
## Model
|
20 |
+
|
21 |
+
The model is available at: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
22 |
+
|
23 |
+
## Features
|
24 |
+
|
25 |
+
- **Robot Command Processing**: Convert natural language to structured robot tasks
|
26 |
+
- **Multi-Robot Coordination**: Handle complex scenarios with multiple excavators and dump trucks
|
27 |
+
- **Task Dependencies**: Generate proper task sequences with dependencies
|
28 |
+
- **Real-time Planning**: Instant task generation powered by Gradio
|
29 |
+
|
30 |
+
## Usage
|
31 |
+
|
32 |
+
Input natural language robot commands like "Deploy Excavator 1 to Soil Area 1" and the model will generate structured task sequences in JSON format for robot execution.
|
33 |
+
|
34 |
+
## Technical Details
|
35 |
+
|
36 |
+
- **Base Model**: meta-llama/Llama-3.1-8B
|
37 |
+
- **Fine-tuning**: QLoRA (4-bit quantization + LoRA)
|
38 |
+
- **Interface**: Gradio
|
39 |
+
- **Hosting**: HuggingFace Spaces
|
40 |
+
- **Input**: Natural language robot commands
|
41 |
+
- **Output**: Structured JSON task sequences
|
42 |
+
|
43 |
+
## Performance
|
44 |
+
|
45 |
+
⚠️ **Note**: Model loading may take 3-5 minutes on first startup due to the large model size and quantization process.
|
app.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
+
from peft import PeftModel
|
5 |
+
import warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
|
8 |
+
# 模型配置
|
9 |
+
MODEL_NAME = "meta-llama/Llama-3.1-8B"
|
10 |
+
LORA_MODEL = "YongdongWang/llama-3.1-8b-dart-qlora"
|
11 |
+
|
12 |
+
def load_model():
|
13 |
+
"""加载模型和分词器"""
|
14 |
+
print("🔄 Loading model...")
|
15 |
+
|
16 |
+
try:
|
17 |
+
# 4位量化配置
|
18 |
+
bnb_config = BitsAndBytesConfig(
|
19 |
+
load_in_4bit=True,
|
20 |
+
bnb_4bit_quant_type="nf4",
|
21 |
+
bnb_4bit_compute_dtype=torch.float16,
|
22 |
+
bnb_4bit_use_double_quant=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
# 加载分词器
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
|
27 |
+
if tokenizer.pad_token is None:
|
28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
29 |
+
|
30 |
+
# 加载基础模型
|
31 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
MODEL_NAME,
|
33 |
+
quantization_config=bnb_config,
|
34 |
+
device_map="auto",
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
trust_remote_code=True
|
37 |
+
)
|
38 |
+
|
39 |
+
# 加载 LoRA 适配器
|
40 |
+
model = PeftModel.from_pretrained(base_model, LORA_MODEL)
|
41 |
+
model.eval()
|
42 |
+
|
43 |
+
print("✅ Model loaded successfully!")
|
44 |
+
return model, tokenizer
|
45 |
+
|
46 |
+
except Exception as load_error:
|
47 |
+
print(f"❌ Model loading failed: {load_error}")
|
48 |
+
return None, None
|
49 |
+
|
50 |
+
# 全局变量存储模型
|
51 |
+
model = None
|
52 |
+
tokenizer = None
|
53 |
+
|
54 |
+
def initialize_model():
|
55 |
+
"""初始化模型 - 延迟加载"""
|
56 |
+
global model, tokenizer
|
57 |
+
if model is None or tokenizer is None:
|
58 |
+
model, tokenizer = load_model()
|
59 |
+
return model is not None and tokenizer is not None
|
60 |
+
|
61 |
+
def generate_response(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
|
62 |
+
"""生成回复"""
|
63 |
+
if not initialize_model():
|
64 |
+
return "❌ Model not loaded. Please check the logs or try again."
|
65 |
+
|
66 |
+
try:
|
67 |
+
# 格式化输入 - 移除多余的字符串插值
|
68 |
+
formatted_prompt = prompt.strip()
|
69 |
+
|
70 |
+
# 编码输入
|
71 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
72 |
+
|
73 |
+
# 生成回复
|
74 |
+
with torch.no_grad():
|
75 |
+
outputs = model.generate(
|
76 |
+
**inputs,
|
77 |
+
max_new_tokens=max_tokens,
|
78 |
+
do_sample=True,
|
79 |
+
temperature=temperature,
|
80 |
+
top_p=top_p,
|
81 |
+
pad_token_id=tokenizer.pad_token_id,
|
82 |
+
eos_token_id=tokenizer.eos_token_id,
|
83 |
+
repetition_penalty=1.1,
|
84 |
+
early_stopping=True,
|
85 |
+
)
|
86 |
+
|
87 |
+
# 解码输出
|
88 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
89 |
+
|
90 |
+
# 移除原始输入,只保留生成的部分
|
91 |
+
if len(response) > len(formatted_prompt):
|
92 |
+
response = response[len(formatted_prompt):].strip()
|
93 |
+
|
94 |
+
# 如果回复包含特殊标记,进行清理
|
95 |
+
if "Assistant:" in response:
|
96 |
+
response = response.split("Assistant:")[-1].strip()
|
97 |
+
|
98 |
+
return response if response else "❌ No response generated. Please try again."
|
99 |
+
|
100 |
+
except Exception as generation_error:
|
101 |
+
return f"❌ Generation Error: {str(generation_error)}"
|
102 |
+
|
103 |
+
def chat_interface(message, history, max_tokens, temperature, top_p):
|
104 |
+
"""聊天界面"""
|
105 |
+
if not message.strip():
|
106 |
+
return history, ""
|
107 |
+
|
108 |
+
try:
|
109 |
+
response = generate_response(message, max_tokens, temperature, top_p)
|
110 |
+
history.append((message, response))
|
111 |
+
return history, ""
|
112 |
+
except Exception as chat_error:
|
113 |
+
error_msg = f"❌ Chat Error: {str(chat_error)}"
|
114 |
+
history.append((message, error_msg))
|
115 |
+
return history, ""
|
116 |
+
|
117 |
+
# 创建 Gradio 应用
|
118 |
+
with gr.Blocks(title="Robot Task Planning - Llama 3.1 8B", theme=gr.themes.Soft()) as demo:
|
119 |
+
gr.Markdown("""
|
120 |
+
# 🤖 Llama 3.1 8B - Robot Task Planning
|
121 |
+
|
122 |
+
This is a fine-tuned version of Meta's Llama 3.1 8B model specialized for **robot task planning** using QLoRA technique.
|
123 |
+
|
124 |
+
**Capabilities**: Convert natural language robot commands into structured task sequences for excavators, dump trucks, and other construction robots.
|
125 |
+
|
126 |
+
**Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
127 |
+
|
128 |
+
⚠️ **Note**: Model loading may take a few minutes on first startup.
|
129 |
+
""")
|
130 |
+
|
131 |
+
with gr.Row():
|
132 |
+
with gr.Column(scale=3):
|
133 |
+
chatbot = gr.Chatbot(
|
134 |
+
label="Task Planning Results",
|
135 |
+
height=400,
|
136 |
+
show_label=True,
|
137 |
+
container=True,
|
138 |
+
bubble_full_width=False
|
139 |
+
)
|
140 |
+
|
141 |
+
msg = gr.Textbox(
|
142 |
+
label="Robot Command",
|
143 |
+
placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...",
|
144 |
+
lines=2,
|
145 |
+
max_lines=5,
|
146 |
+
show_label=True,
|
147 |
+
container=True
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
send_btn = gr.Button("Generate Tasks", variant="primary", size="sm")
|
152 |
+
clear_btn = gr.Button("Clear", variant="secondary", size="sm")
|
153 |
+
|
154 |
+
with gr.Column(scale=1):
|
155 |
+
gr.Markdown("### ⚙️ Generation Settings")
|
156 |
+
|
157 |
+
max_tokens = gr.Slider(
|
158 |
+
minimum=50,
|
159 |
+
maximum=500,
|
160 |
+
value=200,
|
161 |
+
step=10,
|
162 |
+
label="Max Tokens",
|
163 |
+
info="Maximum number of tokens to generate"
|
164 |
+
)
|
165 |
+
|
166 |
+
temperature = gr.Slider(
|
167 |
+
minimum=0.1,
|
168 |
+
maximum=2.0,
|
169 |
+
value=0.7,
|
170 |
+
step=0.1,
|
171 |
+
label="Temperature",
|
172 |
+
info="Controls randomness (lower = more focused)"
|
173 |
+
)
|
174 |
+
|
175 |
+
top_p = gr.Slider(
|
176 |
+
minimum=0.1,
|
177 |
+
maximum=1.0,
|
178 |
+
value=0.9,
|
179 |
+
step=0.05,
|
180 |
+
label="Top-p",
|
181 |
+
info="Nucleus sampling threshold"
|
182 |
+
)
|
183 |
+
|
184 |
+
# 示例对话
|
185 |
+
gr.Examples(
|
186 |
+
examples=[
|
187 |
+
["Deploy Excavator 1 to Soil Area 1 for excavation."],
|
188 |
+
["Send Dump Truck 1 to collect material, then unload at storage area."],
|
189 |
+
["Move all robots to avoid Puddle 1 after inspection."],
|
190 |
+
["Deploy multiple excavators to different soil areas simultaneously."],
|
191 |
+
["Coordinate dump trucks to transport materials from excavation site to storage."],
|
192 |
+
["Send robot to inspect rock area, then avoid with all other robots."],
|
193 |
+
["Return all robots to start position after completing tasks."],
|
194 |
+
],
|
195 |
+
inputs=msg,
|
196 |
+
label="💡 Example Robot Commands"
|
197 |
+
)
|
198 |
+
|
199 |
+
# 事件处理
|
200 |
+
msg.submit(
|
201 |
+
chat_interface,
|
202 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
203 |
+
outputs=[chatbot, msg]
|
204 |
+
)
|
205 |
+
|
206 |
+
send_btn.click(
|
207 |
+
chat_interface,
|
208 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
209 |
+
outputs=[chatbot, msg]
|
210 |
+
)
|
211 |
+
|
212 |
+
clear_btn.click(
|
213 |
+
lambda: ([], ""),
|
214 |
+
outputs=[chatbot, msg]
|
215 |
+
)
|
216 |
+
|
217 |
+
if __name__ == "__main__":
|
218 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.44.0
|
2 |
+
transformers==4.44.2
|
3 |
+
torch==2.1.0
|
4 |
+
peft==0.7.1
|
5 |
+
bitsandbytes==0.41.3
|
6 |
+
accelerate==0.24.1
|
7 |
+
scipy==1.11.4
|