|
import torch |
|
import numpy as np |
|
from einops import rearrange |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Compose |
|
import cv2 |
|
|
|
from depth_anything_v2_metric.depth_anything_v2.dpt import DepthAnythingV2 |
|
from .utils import LoRA_Depth_Anything_v2 |
|
|
|
from argparse import Namespace |
|
from .models import register |
|
from depth_anything_utils import Resize, NormalizeImage, PrepareForNet |
|
|
|
class PanDA(nn.Module): |
|
def __init__(self, args): |
|
""" |
|
PanDA model for depth estimation |
|
""" |
|
super().__init__() |
|
|
|
midas_model_type = args.midas_model_type |
|
fine_tune_type = args.fine_tune_type |
|
min_depth = args.min_depth |
|
self.max_depth = args.max_depth |
|
lora = args.lora |
|
train_decoder = args.train_decoder |
|
lora_rank = args.lora_rank |
|
|
|
|
|
model_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
} |
|
|
|
|
|
depth_anything = DepthAnythingV2(**{**model_configs[midas_model_type], 'max_depth': 1.0}) |
|
if fine_tune_type == 'none': |
|
depth_anything.load_state_dict(torch.load(f'/hpc2hdd/home/zcao740/Documents/360Depth/Semi-supervision/checkpoints/depth_anything_v2_{midas_model_type}.pth')) |
|
elif fine_tune_type == 'hypersim': |
|
depth_anything.load_state_dict(torch.load(f'/hpc2hdd/home/zcao740/Documents/360Depth/Semi-supervision/checkpoints/depth_anything_v2_metric_hypersim_{midas_model_type}.pth')) |
|
elif fine_tune_type == 'vkitti': |
|
depth_anything.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_metric_vkitti_{midas_model_type}.pth')) |
|
elif fine_tune_type == "backbone": |
|
depth_anything.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{midas_model_type}.pth')) |
|
elif fine_tune_type == "inference": |
|
pass |
|
|
|
|
|
if lora: |
|
self.core = depth_anything |
|
LoRA_Depth_Anything_v2(depth_anything, r=lora_rank) |
|
if not train_decoder: |
|
for param in self.core.depth_head.parameters(): |
|
param.requires_grad = False |
|
else: |
|
self.core = depth_anything |
|
|
|
def forward(self, image): |
|
if image.dim() == 3: |
|
image = image.unsqueeze(0) |
|
|
|
|
|
erp_pred = self.core(image) |
|
erp_pred = erp_pred.unsqueeze(1) |
|
|
|
outputs = {} |
|
outputs["pred_depth"] = erp_pred * self.max_depth |
|
|
|
return outputs |
|
|
|
@torch.no_grad() |
|
def infer_image(self, raw_image, input_size=518): |
|
image, (h, w) = self.image2tensor(raw_image, input_size) |
|
|
|
depth = self.forward(image)["pred_depth"] |
|
|
|
depth = F.interpolate(depth, (h, w), mode="bilinear", align_corners=True)[0, 0] |
|
|
|
return depth.cpu().numpy() |
|
|
|
def image2tensor(self, raw_image, input_size=518): |
|
transform = Compose([ |
|
Resize( |
|
width=input_size * 2, |
|
height=input_size, |
|
resize_target=False, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=14, |
|
resize_method='lower_bound', |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
PrepareForNet(), |
|
]) |
|
|
|
h, w = raw_image.shape[:2] |
|
|
|
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0 |
|
|
|
image = transform({'image': image})['image'] |
|
image = torch.from_numpy(image).unsqueeze(0) |
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' |
|
image = image.to(DEVICE) |
|
|
|
return image, (h, w) |
|
|
|
@register('panda') |
|
def make_model(midas_model_type='vits', fine_tune_type='none', min_depth=0.1, max_depth=10.0, lora=True, train_decoder=True, lora_rank=4): |
|
args = Namespace() |
|
args.midas_model_type = midas_model_type |
|
args.fine_tune_type = fine_tune_type |
|
args.min_depth = min_depth |
|
args.max_depth = max_depth |
|
args.lora = lora |
|
args.train_decoder = train_decoder |
|
args.lora_rank = lora_rank |
|
return PanDA(args) |