Spaces:
Sleeping
Sleeping
app
Browse files- app.py +72 -0
- build_model_1_v2.h5 +3 -0
app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from tensorflow.keras.models import load_model as lm
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
|
| 7 |
+
# Load your trained CIFAR model
|
| 8 |
+
model = lm('models/build_model_1_v2.keras')
|
| 9 |
+
|
| 10 |
+
# Define the CIFAR-10 class names
|
| 11 |
+
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Function to preprocess the image and predict the class
|
| 15 |
+
def classify_image(image):
|
| 16 |
+
# Ensure the image is in the right format
|
| 17 |
+
image = Image.fromarray(image).convert('RGB')
|
| 18 |
+
|
| 19 |
+
# Resize the image to (32, 32) as CIFAR-10 uses 32x32 images
|
| 20 |
+
image = image.resize((32, 32))
|
| 21 |
+
|
| 22 |
+
# Convert the image to an array and preprocess it
|
| 23 |
+
image_array = np.array(image).astype(np.float32) / 255.0 # Normalize to [0, 1]
|
| 24 |
+
|
| 25 |
+
# Expand dimensions to match model input shape (1, 32, 32, 3)
|
| 26 |
+
image_array = np.expand_dims(image_array, axis=0)
|
| 27 |
+
|
| 28 |
+
# Get predictions
|
| 29 |
+
predictions = model.predict(image_array)[0] # Get the prediction array for the first image
|
| 30 |
+
|
| 31 |
+
# Get the predicted class and its confidence
|
| 32 |
+
predicted_class_idx = np.argmax(predictions)
|
| 33 |
+
predicted_class = class_names[predicted_class_idx]
|
| 34 |
+
predicted_confidence = predictions[predicted_class_idx] * 100 # Convert to percentage
|
| 35 |
+
|
| 36 |
+
# Print predicted class and confidence
|
| 37 |
+
predicted_info = f"Predicted Class: {predicted_class} with {predicted_confidence:.2f}% confidence."
|
| 38 |
+
|
| 39 |
+
# Create a Plotly bar chart for class confidence levels
|
| 40 |
+
fig = go.Figure(go.Bar(
|
| 41 |
+
x=predictions * 100, # Convert probabilities to percentages
|
| 42 |
+
y=class_names,
|
| 43 |
+
orientation='h',
|
| 44 |
+
marker=dict(color='skyblue'),
|
| 45 |
+
text=[f"{conf:.1f}%" for conf in predictions * 100], # Show percentage labels
|
| 46 |
+
hoverinfo="text"
|
| 47 |
+
))
|
| 48 |
+
|
| 49 |
+
# Update layout for better presentation
|
| 50 |
+
fig.update_layout(
|
| 51 |
+
title="Class Confidence Levels",
|
| 52 |
+
xaxis_title="Confidence (%)",
|
| 53 |
+
yaxis_title="Classes",
|
| 54 |
+
xaxis=dict(range=[0, 100]), # Set x-axis to 0-100%
|
| 55 |
+
yaxis=dict(categoryorder='total ascending'), # Sort bars by confidence
|
| 56 |
+
bargap=0.2
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
return predicted_info, fig
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# Define the Gradio interface
|
| 63 |
+
interface = gr.Interface(
|
| 64 |
+
fn=classify_image,
|
| 65 |
+
inputs=gr.Image(type="numpy"),
|
| 66 |
+
outputs=["text", gr.Plot()],
|
| 67 |
+
title="CIFAR Image Classification",
|
| 68 |
+
description="Upload an image, and the model will classify it as one of the CIFAR-10 classes."
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Launch the interface
|
| 72 |
+
interface.launch()
|
build_model_1_v2.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:16d160cfb01eefa350299b6db302e13b2040efb574a41963caeb998d88f53a97
|
| 3 |
+
size 2301984
|