med-coding / app.py
abnuel's picture
Update app.py
be85ca1 verified
import pandas as pd
import torch
import os
from transformers import AutoTokenizer, BitsAndBytesConfig, AutoModelForCausalLM
from huggingface_hub import login
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_classic.chains import RetrievalQA
from langchain_core.prompts import PromptTemplate
from langchain_community.llms import HuggingFacePipeline
from langchain_community.document_loaders.csv_loader import CSVLoader
import transformers
from langchain_core.documents import Document
import gradio as gr
import re
model = "abnuel/MedGemma-4b-ICD"
#tokenizer = AutoTokenizer.from_pretrained("abnuel/MedGemma-4b-ICD")
SYSTEM_PROMPT = "You are an expert medical coder. Your task is to analyze the clinical description provided and output only the single, most appropriate ICD-10-CM code. Do not include any text, justification other than the code itself."
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
OFFLOAD_FOLDER = "model_offload_dir"
model = AutoModelForCausalLM.from_pretrained(
model,
quantization_config=bnb_config,
device_map="auto",
offload_folder=OFFLOAD_FOLDER
)
def generate_response(clinical_note):
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": f"Code the following: {clinical_note}"},
]
# 3. Apply chat template and tokenize
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
input_len = inputs["input_ids"].shape[-1]
# 4. Generate the response
with torch.inference_mode():
generation = model.generate(
**inputs,
max_new_tokens=200, # Max length of the generated ICD codes
do_sample=False, # Use greedy decoding for predictable output
temperature=0.0, # Zero temperature for deterministic results
)
# 5. Decode the output
# Extract only the newly generated tokens
generation = generation[0][input_len:]
decoded_output = tokenizer.decode(generation, skip_special_tokens=True)
return decoded_output.strip()
# --- Example Usage ---
#test_note = "Sudden onset chest pain and shortness of breath. Initial diagnosis points towards unstable angina."
#print(f"Clinical Note: {test_note}")
#response = generate_response(test_note)
#print(f"Generated ICD Codes: {response}")
pipe = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=50,
temperature=0.1,
do_sample=False,
pad_token_id=tokenizer.eos_token_id,
)
hf_llm = HuggingFacePipeline(pipeline=pipe)
df = pd.read_csv("./medical_coding_train_1.csv")
documents = [
Document(
page_content=f"note: {row['note']}\nicd_code: {row['icd_codes']}",
metadata={"icd_code": row["icd_codes"]}
)
for _, row in df.iterrows()
]
# 2. Chunk Documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = text_splitter.split_documents(documents)
# 3. Create Embeddings and Vector Store (FAISS)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = FAISS.from_documents(docs, embeddings)
retriever = db.as_retriever(search_kwargs={"k": 2})
RAG_PROMPT_TEMPLATE = """
You are an expert medical coder.
Your task is to determine the most accurate ICD-10-CM code for the given clinical note.
Use ONLY the following context (which may include ICD codes from similar cases).
If you cannot determine a match from the provided context, respond exactly with:
"I cannot find the code in the provided documents."
Return ONLY the ICD-10-CM code itself β€” no explanation, no text, no punctuation.
Context:
{context}
Clinical Note:
{question}
ICD-10-CM Code:
"""
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
#direct_chain = LLMChain(llm=hf_llm, prompt=rag_prompt)
# 5. Create the QA Chain
qa_chain = RetrievalQA.from_chain_type(
llm=hf_llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": rag_prompt}
)
def extract_icd_code(text):
# Pattern to match "ICD-10-CM Code:" followed by the code
pattern = r'ICD-10-CM Code:\s*([A-Z0-9.]+)'
match = re.search(pattern, text)
if match:
return match.group(1)
return None
def generate_code_rag(clinical_note, retriever, threshold=0.35):
"""Generates the ICD code using RAG."""
# Format the user question for the RAG prompt template
query = f"Code the following: {clinical_note}"
# Step 1: Retrieve docs
docs_and_scores = db.similarity_search_with_score(query, k=2)
# Step 2: Filter by similarity threshold
relevant_docs = [doc for doc, score in docs_and_scores if score > threshold]
if relevant_docs:
#print(qa_chain)
result = qa_chain({"query": query})["result"]
#answer = result['result']
icd_code = extract_icd_code(result)
#print(icd_code)
if icd_code == None:
print("I got here")
result = generate_response(clinical_note)
return result
else:
return icd_code
# Step 4: Otherwise, use LLM directly (no context)
# Create the Gradio Interface
gr.Interface(
fn=generate_code_rag,
inputs=gr.Textbox(lines=5, label="Enter Clinical Note Here", placeholder="e.g., Patient presented with simple laceration of the left hand."),
outputs=gr.Textbox(label="Predicted ICD-10 Code"),
title="ClaimSwift Medical Coding",
description="",
examples=[
["Benign neoplasm of peripheral nerves and autonomic nervous system of face, head, and neck"],
["Sudden onset chest pain and shortness of breath. Initial diagnosis points towards unstable angina."],
["Simple laceration of the left hand without foreign body."],
]
).launch(server_name="0.0.0.0", server_port=7860)