Spaces:
Runtime error
Runtime error
Commit
·
197af76
1
Parent(s):
90452ba
added audio transcription
Browse files- app.py +31 -15
- requirements.txt +0 -0
app.py
CHANGED
|
@@ -6,8 +6,9 @@ from fastai.vision.all import load_learner
|
|
| 6 |
import time
|
| 7 |
import base64
|
| 8 |
from deepface import DeepFace
|
| 9 |
-
import torchaudio
|
| 10 |
-
import
|
|
|
|
| 11 |
|
| 12 |
# import pathlib
|
| 13 |
# temp = pathlib.PosixPath
|
|
@@ -22,6 +23,32 @@ backends = [
|
|
| 22 |
'mediapipe'
|
| 23 |
]
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
model = load_learner("gaze-recognizer-v3.pkl")
|
| 26 |
|
| 27 |
def video_processing(video_file, encoded_video):
|
|
@@ -45,19 +72,8 @@ def video_processing(video_file, encoded_video):
|
|
| 45 |
|
| 46 |
start_time = time.time()
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
waveform, sample_rate
|
| 51 |
-
|
| 52 |
-
waveform, sample_rate = torchaudio.load("audio.wav")
|
| 53 |
-
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
| 54 |
-
waveform = resampler(waveform)[0]
|
| 55 |
-
|
| 56 |
-
input_features = processor(waveform.squeeze(dim=0), return_tensors="pt").input_features
|
| 57 |
-
predicted_ids = model.generate(input_features)
|
| 58 |
-
|
| 59 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 60 |
-
print(transcription[0])
|
| 61 |
|
| 62 |
video_capture = cv2.VideoCapture(video_file)
|
| 63 |
on_camera = 0
|
|
|
|
| 6 |
import time
|
| 7 |
import base64
|
| 8 |
from deepface import DeepFace
|
| 9 |
+
import torchaudio
|
| 10 |
+
import moviepy.editor as mp
|
| 11 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 12 |
|
| 13 |
# import pathlib
|
| 14 |
# temp = pathlib.PosixPath
|
|
|
|
| 23 |
'mediapipe'
|
| 24 |
]
|
| 25 |
|
| 26 |
+
def getTranscription(path):
|
| 27 |
+
# Insert Local Video File Path
|
| 28 |
+
clip = mp.VideoFileClip(path)
|
| 29 |
+
|
| 30 |
+
# Insert Local Audio File Path
|
| 31 |
+
clip.audio.write_audiofile(r"audio.wav")
|
| 32 |
+
|
| 33 |
+
waveform, sample_rate = torchaudio.load("audio.wav")
|
| 34 |
+
waveform, sample_rate
|
| 35 |
+
|
| 36 |
+
waveform, sample_rate = torchaudio.load("audio.wav")
|
| 37 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
| 38 |
+
waveform = resampler(waveform)[0]
|
| 39 |
+
|
| 40 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
| 41 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
| 42 |
+
model.config.forced_decoder_ids = None
|
| 43 |
+
|
| 44 |
+
input_features = processor(waveform.squeeze(dim=0), return_tensors="pt").input_features
|
| 45 |
+
predicted_ids = model.generate(input_features)
|
| 46 |
+
|
| 47 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 48 |
+
|
| 49 |
+
return transcription[0]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
model = load_learner("gaze-recognizer-v3.pkl")
|
| 53 |
|
| 54 |
def video_processing(video_file, encoded_video):
|
|
|
|
| 72 |
|
| 73 |
start_time = time.time()
|
| 74 |
|
| 75 |
+
transcription = getTranscription(video_file)
|
| 76 |
+
print(transcription)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
video_capture = cv2.VideoCapture(video_file)
|
| 79 |
on_camera = 0
|
requirements.txt
CHANGED
|
Binary files a/requirements.txt and b/requirements.txt differ
|
|
|