Spaces:
Sleeping
Sleeping
add shap value
Browse files- interface.py +9 -5
- model_utils.py +95 -3
interface.py
CHANGED
|
@@ -70,16 +70,16 @@ def predict_with_explanation(age, weight, height, gravidity, parity, h_abortion,
|
|
| 70 |
if any(field is None or field == "" for field in required_fields):
|
| 71 |
return "⚠️ لطفاً تمام فیلدها را پر کنید", "برای پیشبینی دقیق، تمام اطلاعات مورد نیاز است.", None
|
| 72 |
|
| 73 |
-
result, detailed_report = predict_outcome(
|
| 74 |
age, weight, height, gravidity, parity, h_abortion,
|
| 75 |
living_child, gestational_age, hemoglobin, hematocrit,
|
| 76 |
platelet, mpv, pdw, neutrophil, lymphocyte
|
| 77 |
)
|
| 78 |
|
| 79 |
-
return result, detailed_report
|
| 80 |
|
| 81 |
def clear_all_fields():
|
| 82 |
-
return tuple([None] * 17)
|
| 83 |
|
| 84 |
def load_example(example_name):
|
| 85 |
example_data = EXAMPLE_CASES[example_name]
|
|
@@ -103,6 +103,7 @@ def create_interface():
|
|
| 103 |
- پیشبینی دقیق با استفاده از هوش مصنوعی
|
| 104 |
- تحلیل SHAP برای توضیح تأثیر هر ویژگی
|
| 105 |
- گزارش تفصیلی و قابل فهم برای پزشکان
|
|
|
|
| 106 |
|
| 107 |
📝 **راهنما:** تمام فیلدها را پر کنید یا از مثالهای آماده استفاده کنید.
|
| 108 |
""")
|
|
@@ -119,6 +120,9 @@ def create_interface():
|
|
| 119 |
with gr.Column(scale=2):
|
| 120 |
result_text = gr.Textbox(label="نتیجه پیشبینی", lines=2)
|
| 121 |
detailed_report = gr.Markdown(label="گزارش تفصیلی")
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
gr.Markdown("---")
|
| 124 |
gr.Markdown("## 📚 مثالهای آماده")
|
|
@@ -134,12 +138,12 @@ def create_interface():
|
|
| 134 |
predict_btn.click(
|
| 135 |
fn=predict_with_explanation,
|
| 136 |
inputs=list(patient_inputs) + list(lab_inputs),
|
| 137 |
-
outputs=[result_text, detailed_report]
|
| 138 |
)
|
| 139 |
|
| 140 |
clear_btn.click(
|
| 141 |
fn=clear_all_fields,
|
| 142 |
-
outputs=list(patient_inputs) + list(lab_inputs) + [result_text, detailed_report]
|
| 143 |
)
|
| 144 |
|
| 145 |
return demo
|
|
|
|
| 70 |
if any(field is None or field == "" for field in required_fields):
|
| 71 |
return "⚠️ لطفاً تمام فیلدها را پر کنید", "برای پیشبینی دقیق، تمام اطلاعات مورد نیاز است.", None
|
| 72 |
|
| 73 |
+
result, detailed_report, shap_plot = predict_outcome(
|
| 74 |
age, weight, height, gravidity, parity, h_abortion,
|
| 75 |
living_child, gestational_age, hemoglobin, hematocrit,
|
| 76 |
platelet, mpv, pdw, neutrophil, lymphocyte
|
| 77 |
)
|
| 78 |
|
| 79 |
+
return result, detailed_report, shap_plot
|
| 80 |
|
| 81 |
def clear_all_fields():
|
| 82 |
+
return tuple([None] * 17) + ("", "", None)
|
| 83 |
|
| 84 |
def load_example(example_name):
|
| 85 |
example_data = EXAMPLE_CASES[example_name]
|
|
|
|
| 103 |
- پیشبینی دقیق با استفاده از هوش مصنوعی
|
| 104 |
- تحلیل SHAP برای توضیح تأثیر هر ویژگی
|
| 105 |
- گزارش تفصیلی و قابل فهم برای پزشکان
|
| 106 |
+
- نمودار تصویری تأثیر پارامترها
|
| 107 |
|
| 108 |
📝 **راهنما:** تمام فیلدها را پر کنید یا از مثالهای آماده استفاده کنید.
|
| 109 |
""")
|
|
|
|
| 120 |
with gr.Column(scale=2):
|
| 121 |
result_text = gr.Textbox(label="نتیجه پیشبینی", lines=2)
|
| 122 |
detailed_report = gr.Markdown(label="گزارش تفصیلی")
|
| 123 |
+
|
| 124 |
+
with gr.Column(scale=1):
|
| 125 |
+
shap_plot = gr.Image(label="نمودار SHAP - تأثیر ویژگیها", type="filepath")
|
| 126 |
|
| 127 |
gr.Markdown("---")
|
| 128 |
gr.Markdown("## 📚 مثالهای آماده")
|
|
|
|
| 138 |
predict_btn.click(
|
| 139 |
fn=predict_with_explanation,
|
| 140 |
inputs=list(patient_inputs) + list(lab_inputs),
|
| 141 |
+
outputs=[result_text, detailed_report, shap_plot]
|
| 142 |
)
|
| 143 |
|
| 144 |
clear_btn.click(
|
| 145 |
fn=clear_all_fields,
|
| 146 |
+
outputs=list(patient_inputs) + list(lab_inputs) + [result_text, detailed_report, shap_plot]
|
| 147 |
)
|
| 148 |
|
| 149 |
return demo
|
model_utils.py
CHANGED
|
@@ -1,10 +1,20 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import joblib
|
| 3 |
import warnings
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
warnings.filterwarnings('ignore')
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def calculate_derived_features(age, weight, height, neutrophil, lymphocyte, platelet):
|
| 9 |
height_m = height / 100
|
| 10 |
bmi = weight / (height_m ** 2)
|
|
@@ -12,11 +22,67 @@ def calculate_derived_features(age, weight, height, neutrophil, lymphocyte, plat
|
|
| 12 |
plr = platelet / lymphocyte if lymphocyte > 0 else 0
|
| 13 |
return bmi, nlr, plr
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def predict_outcome(age, weight, height, gravidity, parity, h_abortion,
|
| 16 |
living_child, gestational_age, hemoglobin, hematocrit,
|
| 17 |
platelet, mpv, pdw, neutrophil, lymphocyte):
|
| 18 |
model = get_model()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
try:
|
| 21 |
bmi, nlr, plr = calculate_derived_features(age, weight, height, neutrophil, lymphocyte, platelet)
|
| 22 |
|
|
@@ -48,13 +114,26 @@ def predict_outcome(age, weight, height, gravidity, parity, h_abortion,
|
|
| 48 |
- NLR (نسبت نوتروفیل به لنفوسیت): {nlr:.2f}
|
| 49 |
- PLR (نسبت پلاکت به لنفوسیت): {plr:.2f}
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
⚠️ **توجه:** این پیشبینی صرفاً جهت کمک به تشخیص است و نباید جایگزین نظر پزشک شود.
|
| 52 |
"""
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
except Exception as e:
|
| 57 |
-
return f"خطا در پردازش: {str(e)}", ""
|
| 58 |
|
| 59 |
|
| 60 |
model = None
|
|
@@ -64,8 +143,21 @@ def get_model():
|
|
| 64 |
if model is None:
|
| 65 |
try:
|
| 66 |
model = joblib.load(MODEL_PATH)
|
|
|
|
| 67 |
return model
|
| 68 |
except Exception as e:
|
| 69 |
print(f"Error loading model: {e}")
|
| 70 |
return None
|
| 71 |
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import joblib
|
| 3 |
import warnings
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import matplotlib
|
| 6 |
+
import shap
|
| 7 |
+
import os
|
| 8 |
+
import tempfile
|
| 9 |
+
from config import MODEL_PATH, FEATURE_NAMES
|
| 10 |
|
| 11 |
warnings.filterwarnings('ignore')
|
| 12 |
|
| 13 |
+
matplotlib.use('Agg')
|
| 14 |
+
|
| 15 |
+
plt.rcParams['font.family'] = ['DejaVu Sans']
|
| 16 |
+
plt.rcParams['axes.unicode_minus'] = False
|
| 17 |
+
|
| 18 |
def calculate_derived_features(age, weight, height, neutrophil, lymphocyte, platelet):
|
| 19 |
height_m = height / 100
|
| 20 |
bmi = weight / (height_m ** 2)
|
|
|
|
| 22 |
plr = platelet / lymphocyte if lymphocyte > 0 else 0
|
| 23 |
return bmi, nlr, plr
|
| 24 |
|
| 25 |
+
def create_shap_plot(shap_values, feature_values, feature_names, prediction_proba):
|
| 26 |
+
shap_vals = shap_values[0][:, 1] # Shape: (18,) - SHAP values for class 1
|
| 27 |
+
|
| 28 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
| 29 |
+
temp_filename = temp_file.name
|
| 30 |
+
temp_file.close()
|
| 31 |
+
|
| 32 |
+
fig, ax = plt.subplots(figsize=(10, 12))
|
| 33 |
+
|
| 34 |
+
sorted_indices = np.argsort(np.abs(shap_vals))
|
| 35 |
+
sorted_shap_vals = shap_vals[sorted_indices]
|
| 36 |
+
sorted_feature_names = [feature_names[i] for i in sorted_indices]
|
| 37 |
+
sorted_feature_values = feature_values[sorted_indices]
|
| 38 |
+
|
| 39 |
+
colors = ['red' if val > 0 else 'blue' for val in sorted_shap_vals]
|
| 40 |
+
bars = ax.barh(range(len(sorted_shap_vals)), sorted_shap_vals, color=colors, alpha=0.7)
|
| 41 |
+
|
| 42 |
+
ax.set_yticks(range(len(sorted_feature_names)))
|
| 43 |
+
ax.set_yticklabels([f"{name} = {val:.2f}" for name, val in zip(sorted_feature_names, sorted_feature_values)])
|
| 44 |
+
ax.set_xlabel('SHAP Value (Impact on Prediction)', fontsize=12)
|
| 45 |
+
ax.set_title(f'Feature Impact Analysis\nComplication Risk: {prediction_proba[1]*100:.1f}%',
|
| 46 |
+
fontsize=14, pad=20)
|
| 47 |
+
|
| 48 |
+
ax.axvline(x=0, color='black', linestyle='-', alpha=0.3)
|
| 49 |
+
|
| 50 |
+
for i, (bar, val) in enumerate(zip(bars, sorted_shap_vals)):
|
| 51 |
+
if val != 0:
|
| 52 |
+
ax.text(val + (0.001 if val > 0 else -0.001), i, f'{val:.3f}',
|
| 53 |
+
va='center', ha='left' if val > 0 else 'right', fontsize=9)
|
| 54 |
+
|
| 55 |
+
ax.text(0.02, 0.98, 'Red: Increases risk\nBlue: Decreases risk',
|
| 56 |
+
transform=ax.transAxes, va='top', ha='left',
|
| 57 |
+
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))
|
| 58 |
+
|
| 59 |
+
plt.tight_layout()
|
| 60 |
+
plt.savefig(temp_filename, dpi=300, bbox_inches='tight',
|
| 61 |
+
facecolor='white', edgecolor='none')
|
| 62 |
+
plt.close()
|
| 63 |
+
|
| 64 |
+
return temp_filename
|
| 65 |
+
|
| 66 |
+
def get_shap_explainer_and_values(model, input_data):
|
| 67 |
+
background_data = np.array([[
|
| 68 |
+
28, 65, 162, 24.7, 2, 1, 0, 1, 28, 11.5, 34.0,
|
| 69 |
+
250, 8.5, 12.0, 6.0, 1.8, 3.33, 139
|
| 70 |
+
]])
|
| 71 |
+
|
| 72 |
+
explainer = shap.KernelExplainer(model.predict_proba, background_data)
|
| 73 |
+
shap_values = explainer.shap_values(input_data, nsamples=100)
|
| 74 |
+
|
| 75 |
+
return shap_values
|
| 76 |
+
|
| 77 |
+
|
| 78 |
def predict_outcome(age, weight, height, gravidity, parity, h_abortion,
|
| 79 |
living_child, gestational_age, hemoglobin, hematocrit,
|
| 80 |
platelet, mpv, pdw, neutrophil, lymphocyte):
|
| 81 |
model = get_model()
|
| 82 |
|
| 83 |
+
if model is None:
|
| 84 |
+
return "خطا: مدل بارگذاری نشده است", "", None
|
| 85 |
+
|
| 86 |
try:
|
| 87 |
bmi, nlr, plr = calculate_derived_features(age, weight, height, neutrophil, lymphocyte, platelet)
|
| 88 |
|
|
|
|
| 114 |
- NLR (نسبت نوتروفیل به لنفوسیت): {nlr:.2f}
|
| 115 |
- PLR (نسبت پلاکت به لنفوسیت): {plr:.2f}
|
| 116 |
|
| 117 |
+
**احتمالات تفصیلی:**
|
| 118 |
+
- احتمال سالم بودن: {prediction_proba[0]*100:.1f}%
|
| 119 |
+
- احتمال بروز عوارض: {prediction_proba[1]*100:.1f}%
|
| 120 |
+
|
| 121 |
⚠️ **توجه:** این پیشبینی صرفاً جهت کمک به تشخیص است و نباید جایگزین نظر پزشک شود.
|
| 122 |
"""
|
| 123 |
|
| 124 |
+
shap_values = get_shap_explainer_and_values(model, input_data)
|
| 125 |
+
|
| 126 |
+
shap_plot_path = create_shap_plot(
|
| 127 |
+
shap_values,
|
| 128 |
+
input_data[0],
|
| 129 |
+
FEATURE_NAMES,
|
| 130 |
+
prediction_proba
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
return result, detailed_report, shap_plot_path
|
| 134 |
|
| 135 |
except Exception as e:
|
| 136 |
+
return f"خطا در پردازش: {str(e)}", "", None
|
| 137 |
|
| 138 |
|
| 139 |
model = None
|
|
|
|
| 143 |
if model is None:
|
| 144 |
try:
|
| 145 |
model = joblib.load(MODEL_PATH)
|
| 146 |
+
print("Model loaded successfully!")
|
| 147 |
return model
|
| 148 |
except Exception as e:
|
| 149 |
print(f"Error loading model: {e}")
|
| 150 |
return None
|
| 151 |
return model
|
| 152 |
+
|
| 153 |
+
def cleanup_temp_files():
|
| 154 |
+
try:
|
| 155 |
+
temp_dir = tempfile.gettempdir()
|
| 156 |
+
for filename in os.listdir(temp_dir):
|
| 157 |
+
if filename.endswith('.png') and 'tmp' in filename:
|
| 158 |
+
try:
|
| 159 |
+
os.remove(os.path.join(temp_dir, filename))
|
| 160 |
+
except:
|
| 161 |
+
pass
|
| 162 |
+
except:
|
| 163 |
+
pass
|