Spaces:
Running
Running
from transformers import BartTokenizer, BartForConditionalGeneration, TrainingArguments, Trainer | |
import pandas as pd | |
from datasets import Dataset, Features, Value | |
import evaluate | |
import nltk | |
import json | |
import os | |
import random | |
nltk.download('punkt') | |
# === CONFIGURATION === | |
train_file = r"C:/Users/aditi/OneDrive/Desktop/train_v0.2 QuaC.json" | |
model_name = "voidful/bart-eqg-question-generator" | |
output_dir = "./bart-eqg-finetuned-500" | |
# === FILE CHECK === | |
if not os.path.exists(train_file): | |
raise FileNotFoundError(f"File not found at: {train_file}") | |
# === LOAD DATA === | |
with open(train_file, 'r', encoding='utf-8') as f: | |
quac_data = json.load(f) | |
# === EXTRACT 500 Q&A PAIRS === | |
data = [] | |
for item in quac_data.get("data", []): | |
for paragraph in item.get("paragraphs", []): | |
context = paragraph.get("context", "") | |
for qa in paragraph.get("qas", []): | |
question = qa.get("question", "") | |
answer = qa.get("answers", [{}])[0].get("text", "") if qa.get("answers") else "" | |
if context and question and answer: | |
data.append({"context": context, "question": question, "answer": answer}) | |
random.seed(42) | |
random.shuffle(data) | |
data = data[:500] | |
# === CREATE DATASET === | |
df = pd.DataFrame(data)[["context", "question", "answer"]] | |
features = Features({ | |
"context": Value("string"), | |
"question": Value("string"), | |
"answer": Value("string") | |
}) | |
dataset = Dataset.from_pandas(df, features=features) | |
train_test_split = dataset.train_test_split(test_size=0.2, seed=42) | |
train_dataset = train_test_split["train"] | |
eval_dataset = train_test_split["test"] | |
print(f"Train size: {len(train_dataset)} | Eval size: {len(eval_dataset)}") | |
# === LOAD MODEL AND TOKENIZER === | |
try: | |
tokenizer = BartTokenizer.from_pretrained(model_name) | |
model = BartForConditionalGeneration.from_pretrained(model_name) | |
except Exception as e: | |
raise RuntimeError(f"Could not load model or tokenizer: {e}") | |
# === PREPROCESS FUNCTION === | |
def preprocess(example): | |
input_text = example['context'] | |
target_text = example['question'] | |
model_inputs = tokenizer(input_text, max_length=512, truncation=True, padding="max_length") | |
labels = tokenizer(target_text, max_length=64, truncation=True, padding="max_length")["input_ids"] | |
model_inputs["labels"] = labels | |
return model_inputs | |
tokenized_train_dataset = train_dataset.map(preprocess, remove_columns=train_dataset.column_names, batched=True) | |
tokenized_eval_dataset = eval_dataset.map(preprocess, remove_columns=eval_dataset.column_names, batched=True) | |
# === METRIC COMPUTATION === | |
def compute_metrics(eval_pred): | |
preds, labels = eval_pred | |
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
bleu = evaluate.load("bleu") | |
rouge = evaluate.load("rouge") | |
bleu_score = bleu.compute(predictions=decoded_preds, references=decoded_labels) | |
rouge_score = rouge.compute(predictions=decoded_preds, references=decoded_labels) | |
return { | |
"bleu": bleu_score["bleu"], | |
"rouge1": rouge_score["rouge1"], | |
"rougeL": rouge_score["rougeL"] | |
} | |
# === TRAINING ARGS === (no evaluation_strategy used) | |
training_args = TrainingArguments( | |
output_dir=output_dir, | |
per_device_train_batch_size=2, | |
per_device_eval_batch_size=2, | |
num_train_epochs=3, | |
save_strategy="epoch", | |
save_total_limit=1, | |
logging_dir="./logs", | |
logging_steps=10, | |
fp16=False, | |
report_to="none" | |
) | |
# === TRAINER === | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_train_dataset, | |
eval_dataset=tokenized_eval_dataset, | |
compute_metrics=compute_metrics | |
) | |
# === TRAIN & EVALUATE === | |
print("Fine-tuning started...") | |
#trainer.train() | |
trainer.train(resume_from_checkpoint=True) | |
print("Running final evaluation...") | |
results = trainer.evaluate() | |
print("Final Evaluation Results:") | |
for metric, score in results.items(): | |
print(f" {metric}: {score}") | |
# === SAVE MODEL === | |
model.save_pretrained(os.path.join(output_dir, "final")) | |
tokenizer.save_pretrained(os.path.join(output_dir, "final")) | |
print("Fine-tuned model and tokenizer saved!") | |