QuizCraftAi / fine_tune_and_evaluation.py
Aditi
fine-tune & evaluation
ac1fe86
from transformers import BartTokenizer, BartForConditionalGeneration, TrainingArguments, Trainer
import pandas as pd
from datasets import Dataset, Features, Value
import evaluate
import nltk
import json
import os
import random
nltk.download('punkt')
# === CONFIGURATION ===
train_file = r"C:/Users/aditi/OneDrive/Desktop/train_v0.2 QuaC.json"
model_name = "voidful/bart-eqg-question-generator"
output_dir = "./bart-eqg-finetuned-500"
# === FILE CHECK ===
if not os.path.exists(train_file):
raise FileNotFoundError(f"File not found at: {train_file}")
# === LOAD DATA ===
with open(train_file, 'r', encoding='utf-8') as f:
quac_data = json.load(f)
# === EXTRACT 500 Q&A PAIRS ===
data = []
for item in quac_data.get("data", []):
for paragraph in item.get("paragraphs", []):
context = paragraph.get("context", "")
for qa in paragraph.get("qas", []):
question = qa.get("question", "")
answer = qa.get("answers", [{}])[0].get("text", "") if qa.get("answers") else ""
if context and question and answer:
data.append({"context": context, "question": question, "answer": answer})
random.seed(42)
random.shuffle(data)
data = data[:500]
# === CREATE DATASET ===
df = pd.DataFrame(data)[["context", "question", "answer"]]
features = Features({
"context": Value("string"),
"question": Value("string"),
"answer": Value("string")
})
dataset = Dataset.from_pandas(df, features=features)
train_test_split = dataset.train_test_split(test_size=0.2, seed=42)
train_dataset = train_test_split["train"]
eval_dataset = train_test_split["test"]
print(f"Train size: {len(train_dataset)} | Eval size: {len(eval_dataset)}")
# === LOAD MODEL AND TOKENIZER ===
try:
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
except Exception as e:
raise RuntimeError(f"Could not load model or tokenizer: {e}")
# === PREPROCESS FUNCTION ===
def preprocess(example):
input_text = example['context']
target_text = example['question']
model_inputs = tokenizer(input_text, max_length=512, truncation=True, padding="max_length")
labels = tokenizer(target_text, max_length=64, truncation=True, padding="max_length")["input_ids"]
model_inputs["labels"] = labels
return model_inputs
tokenized_train_dataset = train_dataset.map(preprocess, remove_columns=train_dataset.column_names, batched=True)
tokenized_eval_dataset = eval_dataset.map(preprocess, remove_columns=eval_dataset.column_names, batched=True)
# === METRIC COMPUTATION ===
def compute_metrics(eval_pred):
preds, labels = eval_pred
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
bleu_score = bleu.compute(predictions=decoded_preds, references=decoded_labels)
rouge_score = rouge.compute(predictions=decoded_preds, references=decoded_labels)
return {
"bleu": bleu_score["bleu"],
"rouge1": rouge_score["rouge1"],
"rougeL": rouge_score["rougeL"]
}
# === TRAINING ARGS === (no evaluation_strategy used)
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=3,
save_strategy="epoch",
save_total_limit=1,
logging_dir="./logs",
logging_steps=10,
fp16=False,
report_to="none"
)
# === TRAINER ===
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_eval_dataset,
compute_metrics=compute_metrics
)
# === TRAIN & EVALUATE ===
print("Fine-tuning started...")
#trainer.train()
trainer.train(resume_from_checkpoint=True)
print("Running final evaluation...")
results = trainer.evaluate()
print("Final Evaluation Results:")
for metric, score in results.items():
print(f" {metric}: {score}")
# === SAVE MODEL ===
model.save_pretrained(os.path.join(output_dir, "final"))
tokenizer.save_pretrained(os.path.join(output_dir, "final"))
print("Fine-tuned model and tokenizer saved!")