adityamanwatkar commited on
Commit
43f6750
·
verified ·
1 Parent(s): f48d42b

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +51 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,53 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
1
  import streamlit as st
2
+ from tensorflow.keras.models import load_model
3
+ from tensorflow.keras.layers import DepthwiseConv2D
4
+ from PIL import Image, ImageOps
5
+ import numpy as np
6
+
7
+ # Optional: Patch DepthwiseConv2D if needed
8
+ class PatchedDepthwiseConv2D(DepthwiseConv2D):
9
+ def __init__(self, *args, groups=1, **kwargs):
10
+ super().__init__(*args, **kwargs)
11
+
12
+ # Load model
13
+ model = load_model(r"keras_model.h5", compile=False, custom_objects={"DepthwiseConv2D": PatchedDepthwiseConv2D})
14
+
15
+ # Load class labels
16
+ with open(r"labels.txt", "r") as f:
17
+ class_names = f.readlines()
18
+
19
+ st.title("♻️ Garbage Classification Predictor")
20
+
21
+ # Upload image
22
+ uploaded_file = st.file_uploader("Upload a waste image (jpg, png)", type=["jpg", "jpeg", "png"])
23
+
24
+ if st.button("🧪 Predict Waste Type"):
25
+ if uploaded_file is not None:
26
+ image = Image.open(uploaded_file)
27
+ st.image(image, use_container_width=True)
28
+
29
+
30
+ # Preprocess image
31
+ image = image.convert("RGB")
32
+ image = ImageOps.fit(image, (224, 224), Image.Resampling.LANCZOS)
33
+ image_array = np.asarray(image)
34
+ normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
35
+ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
36
+ data[0] = normalized_image_array
37
+
38
+ # Make prediction
39
+ prediction = model.predict(data)
40
+ index = np.argmax(prediction)
41
+ predicted_label = class_names[index].strip()
42
+ confidence = prediction[0][index]
43
+
44
+ # Display result
45
+ st.success(f"Predicted Waste Type: **{predicted_label.upper()}**")
46
+ st.write(f"Confidence Score: **{confidence:.2f}**")
47
+ st.write("♻️ Dispose responsibly!")
48
+ else:
49
+ st.warning("⚠️ Please upload an image before predicting.")
50
+ # 🔚 Footer
51
+ st.markdown("---")
52
+ st.markdown("<p style='text-align: center; font-size: 18px;'>Developed with ❤️ By Twinkle Ghangare for EDUNET FOUNDATION </p>", unsafe_allow_html=True)
53