adityamanwatkar commited on
Commit
bfd3275
·
verified ·
1 Parent(s): 4b0f5ea

Delete src

Browse files
Files changed (3) hide show
  1. src/keras_model.h5 +0 -3
  2. src/labels.txt +0 -5
  3. src/streamlit_app.py +0 -55
src/keras_model.h5 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d80bf760a260153e1aa76937e4f82183f188a43c703abd09463e59087b1e7883
3
- size 2456608
 
 
 
 
src/labels.txt DELETED
@@ -1,5 +0,0 @@
1
- 0 PLASTICS
2
- 1 GLASS
3
- 2 PAPER
4
- 3 METAL
5
- 4 CARDBOARD
 
 
 
 
 
 
src/streamlit_app.py DELETED
@@ -1,55 +0,0 @@
1
- import os
2
- os.environ["HOME"] = "/tmp"
3
- import streamlit as st
4
- from tensorflow.keras.models import load_model
5
- from tensorflow.keras.layers import DepthwiseConv2D
6
- from PIL import Image, ImageOps
7
- import numpy as np
8
-
9
- # Optional: Patch DepthwiseConv2D if needed
10
- class PatchedDepthwiseConv2D(DepthwiseConv2D):
11
- def __init__(self, *args, groups=1, **kwargs):
12
- super().__init__(*args, **kwargs)
13
-
14
- # Load model
15
- model = load_model(r"src/keras_model.h5", compile=False, custom_objects={"DepthwiseConv2D": PatchedDepthwiseConv2D})
16
-
17
- # Load class labels
18
- with open(r"src/labels.txt", "r") as f:
19
- class_names = f.readlines()
20
-
21
- st.title("♻️ Garbage Classification Predictor")
22
-
23
- # Upload image
24
- uploaded_file = st.file_uploader("Upload a waste image (jpg, png)", type=["jpg", "jpeg", "png"])
25
-
26
- if st.button("🧪 Predict Waste Type"):
27
- if uploaded_file is not None:
28
- image = Image.open(uploaded_file)
29
- st.image(image, use_container_width=True)
30
-
31
-
32
- # Preprocess image
33
- image = image.convert("RGB")
34
- image = ImageOps.fit(image, (224, 224), Image.Resampling.LANCZOS)
35
- image_array = np.asarray(image)
36
- normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
37
- data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
38
- data[0] = normalized_image_array
39
-
40
- # Make prediction
41
- prediction = model.predict(data)
42
- index = np.argmax(prediction)
43
- predicted_label = class_names[index].strip()
44
- confidence = prediction[0][index]
45
-
46
- # Display result
47
- st.success(f"Predicted Waste Type: **{predicted_label.upper()}**")
48
- st.write(f"Confidence Score: **{confidence:.2f}**")
49
- st.write("♻️ Dispose responsibly!")
50
- else:
51
- st.warning("⚠️ Please upload an image before predicting.")
52
- # 🔚 Footer
53
- st.markdown("---")
54
- st.markdown("<p style='text-align: center; font-size: 18px;'>Developed for EDUNET FOUNDATION </p>", unsafe_allow_html=True)
55
-