File size: 9,934 Bytes
10e9b7d eccf8e4 3c4371f 5dd5f4f 10e9b7d e80aab9 3db6293 e80aab9 5dd5f4f 31243f4 5dd5f4f 4021bf3 5dd5f4f 3c4371f 5dd5f4f 7e4a06b 5dd5f4f 3c4371f 7e4a06b 7d65c66 5dd5f4f 7e4a06b 31243f4 5dd5f4f 31243f4 5dd5f4f 31243f4 5dd5f4f 36ed51a c1fd3d2 5dd5f4f eccf8e4 31243f4 7d65c66 31243f4 7d65c66 5dd5f4f 7d65c66 31243f4 5dd5f4f 31243f4 5dd5f4f 7d65c66 31243f4 5dd5f4f 31243f4 5dd5f4f 7d65c66 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 5dd5f4f 7d65c66 5dd5f4f e80aab9 5dd5f4f e80aab9 5dd5f4f 0ee0419 e514fd7 5dd5f4f e514fd7 e80aab9 7e4a06b 31243f4 9088b99 7d65c66 5dd5f4f e80aab9 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os
import gradio as gr
import requests
import pandas as pd
from langchain.agents import AgentExecutor, create_react_agent
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from langchain_community.tools import DuckDuckGoSearchRun
from langchain.tools import Tool
from langchain_community.tools import PythonREPLTool
import tempfile
import base64
from langchain_core.messages import HumanMessage
# For PDF and Excel handling - these imports will be used in process_file
try:
from langchain_community.document_loaders import PyPDFLoader
import openpyxl # For Excel
except ImportError:
pass # Assume installed during HF build
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Advanced Agent Definition ---
# ----- THIS IS WHERE THE ADVANCED LOGIC IS BUILT FOR HIGHER SCORES -----
class BasicAgent:
def __init__(self, api_url):
print("Advanced BasicAgent initialized with tool support.")
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY must be set in Hugging Face Space variables for the agent to work.")
# Use a strong model like gpt-4o for better reasoning and vision
self.llm = ChatOpenAI(temperature=0, model="gpt-4o", api_key=openai_api_key)
# Tools for web search, code execution, and file processing
self.search_tool = DuckDuckGoSearchRun(name="web_search", description="Search the web for information.")
self.python_tool = PythonREPLTool(description="Execute Python code for calculations or data processing. Input should be valid Python code.")
# Custom tool for processing files (downloads from API, handles images/PDFs/Excel/text)
self.file_tool = Tool(
name="process_file",
func=self._process_file,
description="Download and process a file associated with a task. Input format: 'task_id: <id>, file_name: <name>'"
)
self.tools = [self.search_tool, self.python_tool, self.file_tool]
# React agent prompt template (inspired by GAIA prompting for exact answers)
self.prompt_template = PromptTemplate.from_template("""
You are an expert AI agent solving GAIA benchmark questions. These questions require reasoning, tool use, and sometimes file processing.
Question: {question}
If the question mentions a file or attachment, use the 'process_file' tool with 'task_id: <task_id>, file_name: <file_name>'.
Reason step-by-step using tools as needed. Output ONLY the final answer in the exact format required by the question. No explanations, no extra text.
{agent_scratchpad}
""")
self.agent = create_react_agent(self.llm, self.tools, self.prompt_template)
self.executor = AgentExecutor(agent=self.agent, tools=self.tools, verbose=True, handle_parsing_errors=True, max_iterations=10)
self.api_url = api_url
def _process_file(self, input_str: str) -> str:
"""Internal function to download and process files."""
try:
# Parse input
parts = dict(part.strip().split(': ', 1) for part in input_str.split(', '))
task_id = parts.get('task_id')
file_name = parts.get('file_name')
if not task_id or not file_name:
return "Invalid input for process_file. Need 'task_id' and 'file_name'."
# Download file
file_url = f"{self.api_url}/files/{task_id}"
response = requests.get(file_url, timeout=10)
response.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file_name)[1]) as tmp:
tmp.write(response.content)
file_path = tmp.name
ext = os.path.splitext(file_name)[1].lower()
if ext in ['.jpg', '.png', '.jpeg', '.gif']:
# Use vision to describe image
with open(file_path, "rb") as img_file:
base64_image = base64.b64encode(img_file.read()).decode('utf-8')
message = HumanMessage(content=[
{"type": "text", "text": "Describe this image in detail, focusing on elements relevant to the question."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
])
description = self.llm.invoke([message]).content
os.unlink(file_path)
return description
elif ext == '.pdf':
loader = PyPDFLoader(file_path)
docs = loader.load()
text = "\n\n".join(doc.page_content for doc in docs)
os.unlink(file_path)
return text[:20000] # Truncate if too long
elif ext in ['.xlsx', '.xls']:
import pandas as pd
df = pd.read_excel(file_path)
os.unlink(file_path)
return df.to_string()
else:
# Text file
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
text = f.read()
os.unlink(file_path)
return text[:20000]
except Exception as e:
return f"Error processing file: {str(e)}"
def __call__(self, question: str, task_id: str, file_name: str | None = None) -> str:
print(f"Agent processing question (first 50 chars): {question[:50]}... (task_id: {task_id}, file: {file_name})")
input_prompt = question
if file_name:
input_prompt += f"\nThere is an attached file '{file_name}'. Use the 'process_file' tool with 'task_id: {task_id}, file_name: {file_name}' to access it."
try:
response = self.executor.invoke({"question": input_prompt})
answer = response['output'].strip()
print(f"Agent returning answer: {answer}")
return answer
except Exception as e:
print(f"Error generating answer: {e}")
return "Agent error occurred."
# Update the run_and_submit_all to pass task_id and file_name to agent
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent(api_url)
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name") # Assuming the API provides 'file_name'; if not, check item for attachments
if not task_id or not question_text:
continue
try:
submitted_answer = agent(question_text, task_id, file_name)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Advanced Agent Evaluation Runner for GAIA (Aiming for 60%+)")
gr.Markdown(
"""
**Instructions:**
1. Set OPENAI_API_KEY in Hugging Face Space variables (Settings > Variables).
2. Log in to Hugging Face.
3. Click 'Run Evaluation & Submit All Answers'.
This agent uses GPT-4o with tools for search, code execution, and file processing (images/PDFs/Excel) to achieve higher scores.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False) |