import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering from PIL import Image import easyocr import os from groq import Groq, APIConnectionError, AuthenticationError # OCR Function def extract_text_from_image(image): reader = easyocr.Reader(['en']) result = reader.readtext(image) extracted_text = " ".join([detection[1] for detection in result]) return extracted_text # Question Answering Function (DistilBERT) @st.cache_resource def load_qa_model(): model_name = "distilbert/distilbert-base-cased-distilled-squad" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) return nlp def answer_question(context, question, qa_model): result = qa_model({'question': question, 'context': context}) return result['answer'] # Groq API Function def groq_chat(prompt): try: client = Groq(api_key=os.environ.get("GROQ_API_KEY")) chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": prompt}], model="llama-3.3-70b-versatile", ) return chat_completion.choices[0].message.content except APIConnectionError as e: return f"Groq API Connection Error: {e}" except AuthenticationError as e: return f"Groq API Authentication Error: {e}" except Exception as e: return f"General Groq API Error: {e}" # Streamlit App def main(): st.title("Image Text & Question Answering Chatbot") uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_container_width=True) if st.button("Extract Text and Enable Question Answering"): with st.spinner("Extracting text..."): extracted_text = extract_text_from_image(image) st.session_state.extracted_text = extracted_text # Store in session state st.write("Extracted Text:") st.write(st.session_state.extracted_text) if "extracted_text" in st.session_state: # Check if extracted_text is in session state qa_model = load_qa_model() question = st.text_input("Ask a question about the image text:") if st.button("Answer"): if question: with st.spinner("Answering..."): answer = answer_question(st.session_state.extracted_text, question, qa_model) st.write("Answer:", answer) else: st.warning("Please enter a question.") # Groq Chat Section st.subheader("General Chat (Powered by Groq)") groq_prompt = st.text_input("Enter your message:") if st.button("Send"): if groq_prompt: with st.spinner("Generating response..."): groq_response = groq_chat(groq_prompt) st.write("Response:", groq_response) else: st.warning("Please enter a message.") if __name__ == "__main__": main()