Rename src/streamlit_app.py to src/app.py
Browse files- src/app.py +64 -0
- src/streamlit_app.py +0 -40
src/app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# === CONFIG ===
|
7 |
+
MODEL_PATH = 'trained_model/asl_model.h5'
|
8 |
+
IMG_SIZE = 64
|
9 |
+
CLASS_NAMES = [chr(i) for i in range(65, 91)] # A-Z
|
10 |
+
|
11 |
+
# Load model once
|
12 |
+
@st.cache_resource(show_spinner=False)
|
13 |
+
def load_model():
|
14 |
+
return tf.keras.models.load_model(MODEL_PATH)
|
15 |
+
|
16 |
+
model = load_model()
|
17 |
+
|
18 |
+
# === UI Header ===
|
19 |
+
st.set_page_config(page_title="ASL Recognition", page_icon="π§ ", layout="centered")
|
20 |
+
st.markdown("<h1 style='text-align: center;'>π§ ASL Alphabet Recognition</h1>", unsafe_allow_html=True)
|
21 |
+
st.markdown("<p style='text-align: center;'>Upload a hand gesture image and get instant letter prediction.</p>", unsafe_allow_html=True)
|
22 |
+
st.divider()
|
23 |
+
|
24 |
+
# === Helper Functions ===
|
25 |
+
def preprocess_image(image: Image.Image):
|
26 |
+
img = image.convert("RGB")
|
27 |
+
img = img.resize((IMG_SIZE, IMG_SIZE))
|
28 |
+
img = np.array(img) / 255.0
|
29 |
+
img = np.expand_dims(img, axis=0)
|
30 |
+
return img
|
31 |
+
|
32 |
+
def predict(img: Image.Image):
|
33 |
+
processed = preprocess_image(img)
|
34 |
+
preds = model.predict(processed)
|
35 |
+
class_idx = np.argmax(preds)
|
36 |
+
confidence = preds[0][class_idx]
|
37 |
+
return CLASS_NAMES[class_idx], confidence
|
38 |
+
|
39 |
+
# === Upload UI ===
|
40 |
+
uploaded_file = st.file_uploader("π Upload a hand gesture image", type=['png', 'jpg', 'jpeg'])
|
41 |
+
|
42 |
+
if uploaded_file:
|
43 |
+
col1, col2 = st.columns([1, 2])
|
44 |
+
with col1:
|
45 |
+
img = Image.open(uploaded_file)
|
46 |
+
st.image(img, caption="π· Uploaded Image", use_column_width=True)
|
47 |
+
with col2:
|
48 |
+
st.write("### π Prediction")
|
49 |
+
label, confidence = predict(img)
|
50 |
+
st.success(f"Predicted Letter: **:blue[{label}]**")
|
51 |
+
st.metric(label="Confidence Score", value=f"{confidence * 100:.2f}%", delta=None)
|
52 |
+
|
53 |
+
# Optional: show full probabilities as a horizontal bar chart
|
54 |
+
preds = model.predict(preprocess_image(img))[0]
|
55 |
+
top_indices = np.argsort(preds)[::-1][:5]
|
56 |
+
st.write("#### π’ Top 5 Predictions")
|
57 |
+
for i in top_indices:
|
58 |
+
st.progress(float(preds[i]), text=f"{CLASS_NAMES[i]}: {preds[i]*100:.2f}%")
|
59 |
+
else:
|
60 |
+
st.info("πΈ Upload a clear image showing a single hand gesture on a plain background.")
|
61 |
+
|
62 |
+
# === Footer ===
|
63 |
+
st.divider()
|
64 |
+
st.markdown("<small style='text-align:center; display:block;'>Developed with β€οΈ using TensorFlow & Streamlit</small>", unsafe_allow_html=True)
|
src/streamlit_app.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
-
"""
|
7 |
-
# Welcome to Streamlit!
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|