aikanava commited on
Commit
1e9ae0c
Β·
verified Β·
1 Parent(s): c993793

Rename src/streamlit_app.py to src/app.py

Browse files
Files changed (2) hide show
  1. src/app.py +64 -0
  2. src/streamlit_app.py +0 -40
src/app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ # === CONFIG ===
7
+ MODEL_PATH = 'trained_model/asl_model.h5'
8
+ IMG_SIZE = 64
9
+ CLASS_NAMES = [chr(i) for i in range(65, 91)] # A-Z
10
+
11
+ # Load model once
12
+ @st.cache_resource(show_spinner=False)
13
+ def load_model():
14
+ return tf.keras.models.load_model(MODEL_PATH)
15
+
16
+ model = load_model()
17
+
18
+ # === UI Header ===
19
+ st.set_page_config(page_title="ASL Recognition", page_icon="🧠", layout="centered")
20
+ st.markdown("<h1 style='text-align: center;'>🧠 ASL Alphabet Recognition</h1>", unsafe_allow_html=True)
21
+ st.markdown("<p style='text-align: center;'>Upload a hand gesture image and get instant letter prediction.</p>", unsafe_allow_html=True)
22
+ st.divider()
23
+
24
+ # === Helper Functions ===
25
+ def preprocess_image(image: Image.Image):
26
+ img = image.convert("RGB")
27
+ img = img.resize((IMG_SIZE, IMG_SIZE))
28
+ img = np.array(img) / 255.0
29
+ img = np.expand_dims(img, axis=0)
30
+ return img
31
+
32
+ def predict(img: Image.Image):
33
+ processed = preprocess_image(img)
34
+ preds = model.predict(processed)
35
+ class_idx = np.argmax(preds)
36
+ confidence = preds[0][class_idx]
37
+ return CLASS_NAMES[class_idx], confidence
38
+
39
+ # === Upload UI ===
40
+ uploaded_file = st.file_uploader("πŸ“ Upload a hand gesture image", type=['png', 'jpg', 'jpeg'])
41
+
42
+ if uploaded_file:
43
+ col1, col2 = st.columns([1, 2])
44
+ with col1:
45
+ img = Image.open(uploaded_file)
46
+ st.image(img, caption="πŸ“· Uploaded Image", use_column_width=True)
47
+ with col2:
48
+ st.write("### πŸ” Prediction")
49
+ label, confidence = predict(img)
50
+ st.success(f"Predicted Letter: **:blue[{label}]**")
51
+ st.metric(label="Confidence Score", value=f"{confidence * 100:.2f}%", delta=None)
52
+
53
+ # Optional: show full probabilities as a horizontal bar chart
54
+ preds = model.predict(preprocess_image(img))[0]
55
+ top_indices = np.argsort(preds)[::-1][:5]
56
+ st.write("#### πŸ”’ Top 5 Predictions")
57
+ for i in top_indices:
58
+ st.progress(float(preds[i]), text=f"{CLASS_NAMES[i]}: {preds[i]*100:.2f}%")
59
+ else:
60
+ st.info("πŸ“Έ Upload a clear image showing a single hand gesture on a plain background.")
61
+
62
+ # === Footer ===
63
+ st.divider()
64
+ st.markdown("<small style='text-align:center; display:block;'>Developed with ❀️ using TensorFlow & Streamlit</small>", unsafe_allow_html=True)
src/streamlit_app.py DELETED
@@ -1,40 +0,0 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
- import streamlit as st
5
-
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))