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PROJECT OVERVIEW AND OBJECTIVES 

 

I.​ Project Overview 

 
Communication is a fundamental human need, and it serves as the pinnacle of 

social participation and inclusion in today’s society. For members of the Deaf and 

hard-of-hearing (DHH) communities, sign language, particularly American Sign 

Language (ASL), renders itself as a primary mode of communication. However, the 

ever-persistent language barrier between ASL users and the broader community often 

poses challenges in services, social interactions, and professional opportunities [1]. 

 

​ Recent advancements in artificial intelligence (AI) and deep learning have 

revolutionized the development of assistive technologies aimed at bridging these 

communication gaps. Automated sign language recognition (SLR) systems, which 

maximize algorithms such as Convolutional Neural Networks (CNNs), have shown 

remarkable efficacy in interpreting static and dynamic hand gestures [2], [3]. These 

systems are increasingly capable of real-time translation, transforming hand poses into 

text or speech, therefore enhancing accessibility and fostering inclusivity for the Deaf 

and DHH community [1].  

 

This project, titled HandCode, is situated within this rapidly evolving research 

landscape. Its principal objective is the design, development, and deployment of an 

image classification system that recognizes static hand gestures corresponding to the 



ASL alphabet. The system is grounded in deep learning principles, specifically 

employing CNNs, which are well-suited for image processing due to their ability to 

automatically extract hierarchical spatial features [3], [4]. The model is trained on a 

publicly available ASL Alphabet Dataset, which includes thousands of labeled images 

representing each of the 26 letters of the English alphabet. 

 

By integrating modern machine learning techniques with a user-friendly interface, 

HandCode aims to contribute to the growing field of AI-assisted communication tools. 

The long-term vision of such systems is to provide real-time translation and 

interpretation services, thus fostering inclusivity and reducing communication barriers 

for ASL users. This paper presents the full development lifecycle of HandCode, from 

dataset preparation and model training to deployment and evaluation, offering insights 

into both the capabilities and limitations of current deep learning approaches to sign 

language recognition [2], [4], [5]. 

 

II.​ Objectives 

​  

​ Generally, this project aims to design, develop, and deploy an image 

classification system capable of recognizing static hand gestures representing the ASL 

alphabet. 

​ Specifically, this project’s methodology is structured around four core objectives: 

1.​ To construct a deep learning architecture capable of effectively 

recognizing ASL hand gestures from images with high accuracy; 



2.​ To train, validate, and test the model using a balanced image dataset that 

reflects real-world variability in gesture representation; 

3.​ To deploy the trained model in an interactive and accessible application 

interface using the Streamlit framework, enabling end-users to input 

gesture images and receive immediate classification result, and;  

4.​ To assess the performance of the model using quantitative metrics such 

as training and validation accuracy, loss curves, precision, recall, and 

confusion matrices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MODEL ARCHITECTURE DIAGRAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Model Architecture Diagram 

 

​ The diagram presents a comprehensive overview of an American Sign Language 

(ASL) Recognition System architecture, delineating the principal stages of data 

preprocessing, model training, evaluation, and inference. The process initiates with an 

input image, which is a single frame capturing an ASL letter hand gesture. To ensure 

uniformity and compatibility with neural network processing, each image is first resized 

to a fixed dimension of 64x64 pixels. This standardization is critical for preventing input 

shape mismatches that could otherwise compromise model performance. Subsequently, 



pixel intensity values, which originally range from 0 to 255, are normalized by dividing 

each value by 255, thereby constraining pixel values to the interval. This normalization 

step not only facilitates faster convergence during training but also stabilizes the 

gradient descent process, contributing to more reliable model optimization. 

 

During the training phase, the system employs data augmentation techniques 

such as random rotation, zooming, and flipping of images. These transformations 

artificially expand the diversity of the training dataset, enabling the model to learn robust 

representations of ASL letters under varying orientations and scales. This approach is 

instrumental in enhancing the model’s ability to generalize to real-world scenarios, 

where hand gestures may be presented from different angles or under varied lighting 

conditions. The preprocessed images, now augmented and normalized, are fed into a 

CNN, which serves as the core of the ASL recognition system. The CNN is specifically 

designed to extract hierarchical spatial features from images, allowing it to learn 

distinctive patterns associated with each ASL letter. 

 

The model pipeline is structured into three key phases: training, testing, and 

inference. In the training phase, the CNN is optimized by minimizing a loss function 

through backpropagation, with model weights being updated based on the discrepancy 

between predicted and true labels. The best-performing model parameters, determined 

by validation accuracy or loss, are retained for subsequent use. Following training, the 

model is rigorously evaluated on a separate test set. This evaluation yields a 

classification report containing key metrics such as accuracy, precision, recall, and 



F1-score, as well as a confusion matrix that visually delineates the model’s performance 

across different ASL letters. These analyses are essential for identifying potential areas 

of confusion or misclassification. 

 

In the inference phase, the system is deployed as an interactive application, 

where users can submit new ASL letter images for classification. For each input, the 

model generates a top predicted class—corresponding to the most likely ASL 

letter—along with a confidence score and a ranked list of the top five probable classes. 

This granular output not only enhances user experience but also provides developers 

with valuable insights into model behavior, facilitating ongoing refinement and 

interpretability. Collectively, the diagram encapsulates the entire ASL recognition 

workflow, underscoring the importance of data standardization, augmentation, and 

model interpretability in the development of a robust, real-world ASL recognition system.  

 

 

 

 

 

 

 

 

 

 



DATASET DESCRIPTION 

​  

The ASL Alphabet Dataset is a publicly available image dataset curated and 

uploaded by grassknoted on Kaggle [5]. It is specifically designed to support research in 

the field of ASL recognition, particularly for static gesture classification tasks. The 

dataset contains a total of 87,000 color images, each with a resolution of 200x200 pixels 

in RGB format, ensuring sufficient visual detail for deep learning model training and 

evaluation. 

 

The dataset is organized into 29 classes, representing the 26 letters of the 

English alphabet (A to Z), as well as three additional classes: "del" (delete), "nothing", 

and "space", which are commonly used control gestures in ASL communication 

systems. Each class comprises approximately 3,000 images, contributing to a balanced 

distribution that supports effective training of machine learning models without 

significant class imbalance issues. 

 

The images in the ASL Alphabet Dataset feature a variety of hand shapes, 

orientations, skin tones, and lighting conditions, enhancing the dataset's diversity and 

realism. These variations make the dataset an ideal resource for training robust models 

capable of generalizing across different real-world scenarios. The dataset captures 

hands performing static ASL signs against simple backgrounds, which facilitates 

focused feature learning while still presenting challenges such as subtle finger position 

differences and occlusions. 



 

This dataset has been widely used in the computer vision and deep learning 

communities as a benchmark for ASL recognition systems, including Convolutional 

Neural Networks (CNNs) and other deep learning architectures. Its accessibility and 

quality make it a foundational resource for researchers and developers aiming to build 

ASL classification models for assistive technologies, educational tools, and 

communication aids for the deaf and hard-of-hearing communities. 

 

Figure 2. Sample images from the ASL Alphabet Dataset 

 

Sample images from the dataset, as shown in Figure 2, illustrate the variety of 

hand poses, lighting conditions, backgrounds, and skin tones captured across the 

dataset. Each image corresponds to a specific static sign in the ASL alphabet, with 

variations in hand orientation and position that reflect natural variability encountered in 



real-world scenarios. This diversity enhances the dataset's utility for training robust 

machine learning models capable of recognizing ASL signs under different conditions. 

 

 

Figure 3. Class distribution in the ASL Alphabet Dataset 

 

​ The class distribution within the dataset is presented in Figure 3, demonstrating 

an even distribution of images across all 29 classes, which includes 26 letters (A–Z) and 

three additional categories: "del" (delete), "nothing," and "space." Each class contains 

approximately 3,000 images, resulting in a total of 87,000 images. This balanced 

representation ensures that the dataset provides sufficient samples for each class, 

supporting effective model training without the risk of class imbalance that could bias 

model performance. Together, the sample images and class distribution illustrate the 

dataset's comprehensiveness and its suitability for developing ASL recognition systems. 

 



TRAINING LOGS AND CHARTS 

 

Figure 4. Model Training Logs and Charts 

 

Figure 4 presents the training and validation accuracy and loss metrics for the 

model trained on the ASL Alphabet dataset. As depicted by the accuracy curves, the 

model displays consistent improvement in performance for both the training and 

validation sets as training progresses through successive epochs. Notably, the training 

accuracy experiences a rapid ascent in the early stages, exceeding 90% by the fifth 

epoch and eventually stabilizing between 95% and 98% toward the later epochs. This 

trend reflects the model’s successful acquisition of the distinctive patterns characteristic 

of ASL hand gestures. 

 

Similarly, the validation accuracy exhibits a parallel trajectory, with a steady 

increase during the initial epochs and eventual stabilization at approximately 85% to 

90%. The presence of a modest gap between training and validation accuracy hints at a 

mild degree of overfitting, a common occurrence in image classification tasks, 



particularly when the dataset lacks extensive diversity. Importantly, the absence of a 

marked divergence between these curves suggests that the model retains a 

commendable capacity for generalization, without succumbing to severe overfitting. 

 

The loss curves provide complementary insight into the model’s learning 

dynamics. The training loss steadily diminishes, converging toward minimal values as 

the model assimilates the training data. The validation loss, by contrast, demonstrates a 

pronounced decrease in the early epochs, indicative of rapid learning, but exhibits minor 

oscillations in later epochs. These fluctuations may be attributed to inherent variability 

within the validation set, such as differences in lighting, hand orientation, and 

background composition, which challenge the model’s generalization ability. Despite 

these perturbations, the validation loss remains relatively stable overall, suggesting that 

the model is developing robust feature representations rather than simply memorizing 

the training data. 

 

Collectively, these findings indicate that the model exhibits robust learning 

behavior and maintains a strong capacity for generalization. Nonetheless, the observed 

instances of mild overfitting highlight the potential value of integrating additional 

regularization strategies, such as dropout layers, enhanced data augmentation, or early 

stopping, to further bolster model robustness. Moreover, the exploration of learning rate 

scheduling or optimizer tuning may help attenuate fluctuations in validation loss and 

promote more stable convergence during training. 

 



 

Figure 5. Confusion Matrix 

 

​ The confusion matrix provides a detailed and quantitative assessment of the 

model’s classification performance across the 26 letters of the English alphabet in 

American Sign Language (ASL). The matrix is characterized by a strong dominance of 

values along its main diagonal, which signifies that the model correctly identifies the 

majority of hand signs with a high degree of accuracy. This pattern reflects the model’s 

robust ability to learn and distinguish the distinct visual patterns, shapes, and 

orientations that define each letter, resulting in accurate predictions for most classes. 

 

However, a closer examination of the matrix reveals a few off-diagonal entries, 

indicating specific areas of misclassification. Notably, the model exhibits confusion 



between the letters ‘E’ and ‘F’ and between ‘V’ and ‘U’. These particular hand signs 

share visual similarities—such as finger positioning and orientation—that can make 

them challenging to distinguish, both for the model and even for human annotators. For 

instance, the letters ‘E’ and ‘F’ both involve a partially closed hand shape, while ‘V’ and 

‘U’ differ mainly in the spread of two fingers, leading to potential ambiguity. These types 

of errors are commonly observed in fine-grained gesture classification tasks, as subtle 

differences in finger alignment, occlusion, or camera angle can introduce additional 

complexity. 

 

Beyond these specific confusions, the absence of widespread errors or 

systematic biases in the matrix suggests that the model does not overfit to particular 

classes and maintains a balanced generalization capability across the entire ASL 

alphabet. This indicates that the model architecture, training strategy, and dataset 

composition were effective in facilitating comprehensive learning of ASL signs. 

However, the observed confusions also point to potential avenues for refinement. 

 

Overall, the confusion matrix analysis demonstrates that the model is highly 

capable of recognizing and classifying ASL hand signs with strong accuracy. The few 

instances of misclassification underscore the inherent challenges in fine-grained visual 

classification and provide valuable insights for targeted improvements in future 

iterations of the model. These findings emphasize the importance of continuous model 

evaluation, error analysis, and domain-specific adaptations in building robust sign 

language recognition systems. 



SAMPLE PREDICTIONS 

 

To evaluate the efficacy of the model, we will conduct a test using three input 

images. This approach allows us to examine how well the model can distinguish 

between visually distinct hand signs and accurately assign them to their respective 

categories. 

 

Sample 1: Image from Test Set: Letter L 

 

 

 

The model correctly identified the sign as the letter "L." This demonstrates that 

the model is performing well on unseen data drawn from the same distribution as the 

training data, indicating effective generalization within the dataset. 

 



Sample 2: Image from Train Set: Letter C 

 

 

 

The model also correctly classified this image as the letter "C." This suggests 

that the model has successfully learned from the training data and can accurately 

recognize patterns it has encountered during training. However, consistent success on 

training data may also indicate potential overfitting, which should be monitored in further 

evaluation. 

 

 

 

 

 



Sample 3: Internet Image: Letter I 

 

 

 

The model correctly classified the letter “I” with a confidence score of 55.67%, 

demonstrating its ability to accurately recognize signs even when presented with new 

images. This result highlights the model’s considerable generalization capabilities within 

the domain and its robustness to variations such as lighting, background, and hand 

shapes. It suggests that the current training data and augmentation strategies are 

effective in helping the model handle diverse inputs, though further improvements can 

still enhance performance on more varied real-world data. 

 

 



Sample 4: Internet Image: Letter S 

 

 

 

The model misclassified this input, predicting a different letter, “M”, when the 

input was actually “S.” This result highlights a key limitation: the model struggles to 

generalize to out-of-distribution data, especially images with different lighting, 

backgrounds, or hand variations. This underscores the need for domain adaptation 

strategies, such as training with webcam-captured data or expanding the diversity of the 

dataset through augmentation or transfer learning. 

 

Based on the model evaluation on the held-out test set, the current model 

achieved an accuracy of 93%. This indicates strong overall performance and suggests 

that the model has learned meaningful features to distinguish between different signs 



effectively. However, while 93% accuracy is promising, it also means there is a 7% error 

rate where the model misclassifies signs. Depending on the application, especially in 

sensitive communication contexts like ASL recognition, even small error rates can 

impact usability. In summary, there is definitely room for further improvements in data 

quality, augmentation, class balancing, and model architecture to reduce errors and 

improve robustness in real-world settings. 

 



LIMITATIONS AND IMPROVEMENTS 

 

One of the primary challenges faced by the execution of this project is the 

model's lack of generalizability to real-time webcam inputs under real-world 

conditions. While the model works exceptionally well on high-quality, curated dataset 

images, it considerably struggles when applied to more variable, real-world scenarios. 

This limitation is mostly caused by the domain mismatch between the dataset used for 

training, which often consists of high-resolution, uniformly-lit, and well-posed images, 

and the inherently noisier, lower-quality webcam captures. These issues underscore the 

importance of addressing the domain shift to ensure robust model performance beyond 

controlled environments. 

 

A second major challenge is the model’s tendency to misclassify certain hand 

signs that exhibit strong visual similarities. For instance, signs 'M' and 'N' have very 

similar hand configurations, and it is hard to tell them apart, particularly when they are 

imaged from slightly different angles or in low-light conditions. This problem highlights 

the inherent difficulty of recognizing subtle intra-class variations in ASL gestures. The 

model’s performance on such cases suggests that while it can learn broad gesture 

patterns, it requires additional refinement to handle fine-grained distinctions effectively. 

 

To address these limitations and make the model more useful in practice, various 

improvements can be suggested for future versions of this project. First, developing a 

custom ASL dataset captured from webcams is essential to bridge the domain gap. 



This dataset should reflect diverse real-world conditions, such as varying lighting, 

backgrounds, skin tones, and hand shapes, ensuring the model can handle the 

variability it will encounter during deployment. 

 

Second, enhancing the data augmentation pipeline with advanced 

techniques, such as brightness and contrast shifts, Gaussian noise, perspective 

distortions, and motion blur, will improve the model’s resilience to common visual 

artifacts in webcam feeds.  

 

Third, leveraging transfer learning by fine-tuning pretrained models like 

MobileNetV2, EfficientNet, or lightweight vision transformers (ViTs) can significantly 

improve performance. These architectures are well-suited for real-time inference on 

low-resource devices, and initializing with pretrained weights (e.g., from ImageNet) 

allows for faster convergence and stronger feature representations.  

 

Lastly, advancing from static sign recognition to dynamic sign language 

recognition is a critical next step. Many ASL signs involve motion and temporal context, 

which static classifiers cannot capture. Incorporating temporal deep learning 

architectures, such as Long Short-Term Memory (LSTM) networks, Gated Recurrent 

Units (GRUs), or 3D Convolutional Neural Networks (3D CNNs), would enable the 

system to model temporal dynamics and recognize continuous sign language 

sequences more effectively. 

 



All in all, while the current model is a promising foundation, addressing domain 

discrepancies through webcam-specific datasets, expanding data augmentation, 

employing transfer learning, and integrating temporal modeling are key to building a 

robust and practical ASL recognition system. These improvements will not only enhance 

accuracy and generalization but also contribute to the development of more inclusive 

and accessible communication technologies for Deaf and DHH communities. 
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