Update app.py
Browse files
app.py
CHANGED
@@ -1,828 +1,2 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
# install required packages
|
4 |
-
os.system('pip install plotly') # plotly 설치
|
5 |
-
os.system('pip install matplotlib') # matplotlib 설치
|
6 |
-
os.system('pip install dgl==1.0.2+cu116 -f https://data.dgl.ai/wheels/cu116/repo.html')
|
7 |
-
os.environ["DGLBACKEND"] = "pytorch"
|
8 |
-
print('Modules installed')
|
9 |
-
|
10 |
-
import plotly.graph_objects as go
|
11 |
-
import numpy as np
|
12 |
-
import gradio as gr
|
13 |
-
import py3Dmol
|
14 |
-
from io import StringIO
|
15 |
-
import json
|
16 |
-
import secrets
|
17 |
-
import copy
|
18 |
-
import matplotlib.pyplot as plt
|
19 |
-
from utils.sampler import HuggingFace_sampler
|
20 |
-
from utils.parsers_inference import parse_pdb
|
21 |
-
from model.util import writepdb
|
22 |
-
from utils.inpainting_util import *
|
23 |
-
|
24 |
-
# install environment goods
|
25 |
-
#os.system("pip -q install dgl -f https://data.dgl.ai/wheels/cu113/repo.html")
|
26 |
-
os.system('pip install dgl==1.0.2+cu116 -f https://data.dgl.ai/wheels/cu116/repo.html')
|
27 |
-
#os.system('pip install gradio')
|
28 |
-
os.environ["DGLBACKEND"] = "pytorch"
|
29 |
-
#os.system(f'pip install -r ./PROTEIN_GENERATOR/requirements.txt')
|
30 |
-
print('Modules installed')
|
31 |
-
|
32 |
-
#os.system('pip install --force gradio==3.36.1')
|
33 |
-
#os.system('pip install gradio_client==0.2.7')
|
34 |
-
#os.system('pip install \"numpy<2\"')
|
35 |
-
#os.system('pip install numpy --upgrade')
|
36 |
-
#os.system('pip install --force numpy==1.24.1')
|
37 |
-
|
38 |
-
|
39 |
-
if not os.path.exists('./SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'):
|
40 |
-
print('Downloading model weights 1')
|
41 |
-
os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt')
|
42 |
-
print('Successfully Downloaded')
|
43 |
-
|
44 |
-
if not os.path.exists('./SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'):
|
45 |
-
print('Downloading model weights 2')
|
46 |
-
os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt')
|
47 |
-
print('Successfully Downloaded')
|
48 |
-
|
49 |
-
import numpy as np
|
50 |
-
import gradio as gr
|
51 |
-
import py3Dmol
|
52 |
-
from io import StringIO
|
53 |
-
import json
|
54 |
-
import secrets
|
55 |
-
import copy
|
56 |
-
import matplotlib.pyplot as plt
|
57 |
-
from utils.sampler import HuggingFace_sampler
|
58 |
-
from utils.parsers_inference import parse_pdb
|
59 |
-
from model.util import writepdb
|
60 |
-
from utils.inpainting_util import *
|
61 |
-
|
62 |
-
|
63 |
-
plt.rcParams.update({'font.size': 13})
|
64 |
-
|
65 |
-
with open('./tmp/args.json','r') as f:
|
66 |
-
args = json.load(f)
|
67 |
-
|
68 |
-
# manually set checkpoint to load
|
69 |
-
args['checkpoint'] = None
|
70 |
-
args['dump_trb'] = False
|
71 |
-
args['dump_args'] = True
|
72 |
-
args['save_best_plddt'] = True
|
73 |
-
args['T'] = 25
|
74 |
-
args['strand_bias'] = 0.0
|
75 |
-
args['loop_bias'] = 0.0
|
76 |
-
args['helix_bias'] = 0.0
|
77 |
-
|
78 |
-
def protein_diffusion_model(sequence, seq_len, helix_bias, strand_bias, loop_bias,
|
79 |
-
secondary_structure, aa_bias, aa_bias_potential,
|
80 |
-
num_steps, noise, hydrophobic_target_score, hydrophobic_potential,
|
81 |
-
contigs, pssm, seq_mask, str_mask, rewrite_pdb):
|
82 |
-
|
83 |
-
|
84 |
-
dssp_checkpoint = './SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'
|
85 |
-
og_checkpoint = './SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'
|
86 |
-
|
87 |
-
model_args = copy.deepcopy(args)
|
88 |
-
|
89 |
-
# make sampler
|
90 |
-
S = HuggingFace_sampler(args=model_args)
|
91 |
-
|
92 |
-
# get random prefix
|
93 |
-
S.out_prefix = './tmp/'+secrets.token_hex(nbytes=10).upper()
|
94 |
-
|
95 |
-
# set args
|
96 |
-
S.args['checkpoint'] = None
|
97 |
-
S.args['dump_trb'] = False
|
98 |
-
S.args['dump_args'] = True
|
99 |
-
S.args['save_best_plddt'] = True
|
100 |
-
S.args['T'] = 20
|
101 |
-
S.args['strand_bias'] = 0.0
|
102 |
-
S.args['loop_bias'] = 0.0
|
103 |
-
S.args['helix_bias'] = 0.0
|
104 |
-
S.args['potentials'] = None
|
105 |
-
S.args['potential_scale'] = None
|
106 |
-
S.args['aa_composition'] = None
|
107 |
-
|
108 |
-
|
109 |
-
# get sequence if entered and make sure all chars are valid
|
110 |
-
alt_aa_dict = {'B':['D','N'],'J':['I','L'],'U':['C'],'Z':['E','Q'],'O':['K']}
|
111 |
-
if sequence not in ['',None]:
|
112 |
-
L = len(sequence)
|
113 |
-
aa_seq = []
|
114 |
-
for aa in sequence.upper():
|
115 |
-
if aa in alt_aa_dict.keys():
|
116 |
-
aa_seq.append(np.random.choice(alt_aa_dict[aa]))
|
117 |
-
else:
|
118 |
-
aa_seq.append(aa)
|
119 |
-
|
120 |
-
S.args['sequence'] = aa_seq
|
121 |
-
elif contigs not in ['',None]:
|
122 |
-
S.args['contigs'] = [contigs]
|
123 |
-
else:
|
124 |
-
S.args['contigs'] = [f'{seq_len}']
|
125 |
-
L = int(seq_len)
|
126 |
-
|
127 |
-
print('DEBUG: ',rewrite_pdb)
|
128 |
-
if rewrite_pdb not in ['',None]:
|
129 |
-
S.args['pdb'] = rewrite_pdb.name
|
130 |
-
|
131 |
-
if seq_mask not in ['',None]:
|
132 |
-
S.args['inpaint_seq'] = [seq_mask]
|
133 |
-
if str_mask not in ['',None]:
|
134 |
-
S.args['inpaint_str'] = [str_mask]
|
135 |
-
|
136 |
-
if secondary_structure in ['',None]:
|
137 |
-
secondary_structure = None
|
138 |
-
else:
|
139 |
-
secondary_structure = ''.join(['E' if x == 'S' else x for x in secondary_structure])
|
140 |
-
if L < len(secondary_structure):
|
141 |
-
secondary_structure = secondary_structure[:len(sequence)]
|
142 |
-
elif L == len(secondary_structure):
|
143 |
-
pass
|
144 |
-
else:
|
145 |
-
dseq = L - len(secondary_structure)
|
146 |
-
secondary_structure += secondary_structure[-1]*dseq
|
147 |
-
|
148 |
-
|
149 |
-
# potentials
|
150 |
-
potential_list = []
|
151 |
-
potential_bias_list = []
|
152 |
-
|
153 |
-
if aa_bias not in ['',None]:
|
154 |
-
potential_list.append('aa_bias')
|
155 |
-
S.args['aa_composition'] = aa_bias
|
156 |
-
if aa_bias_potential in ['',None]:
|
157 |
-
aa_bias_potential = 3
|
158 |
-
potential_bias_list.append(str(aa_bias_potential))
|
159 |
-
'''
|
160 |
-
if target_charge not in ['',None]:
|
161 |
-
potential_list.append('charge')
|
162 |
-
if charge_potential in ['',None]:
|
163 |
-
charge_potential = 1
|
164 |
-
potential_bias_list.append(str(charge_potential))
|
165 |
-
S.args['target_charge'] = float(target_charge)
|
166 |
-
if target_ph in ['',None]:
|
167 |
-
target_ph = 7.4
|
168 |
-
S.args['target_pH'] = float(target_ph)
|
169 |
-
'''
|
170 |
-
|
171 |
-
if hydrophobic_target_score not in ['',None]:
|
172 |
-
potential_list.append('hydrophobic')
|
173 |
-
S.args['hydrophobic_score'] = float(hydrophobic_target_score)
|
174 |
-
if hydrophobic_potential in ['',None]:
|
175 |
-
hydrophobic_potential = 3
|
176 |
-
potential_bias_list.append(str(hydrophobic_potential))
|
177 |
-
|
178 |
-
if pssm not in ['',None]:
|
179 |
-
potential_list.append('PSSM')
|
180 |
-
potential_bias_list.append('5')
|
181 |
-
S.args['PSSM'] = pssm.name
|
182 |
-
|
183 |
-
|
184 |
-
if len(potential_list) > 0:
|
185 |
-
S.args['potentials'] = ','.join(potential_list)
|
186 |
-
S.args['potential_scale'] = ','.join(potential_bias_list)
|
187 |
-
|
188 |
-
|
189 |
-
# normalise secondary_structure bias from range 0-0.3
|
190 |
-
S.args['secondary_structure'] = secondary_structure
|
191 |
-
S.args['helix_bias'] = helix_bias
|
192 |
-
S.args['strand_bias'] = strand_bias
|
193 |
-
S.args['loop_bias'] = loop_bias
|
194 |
-
|
195 |
-
# set T
|
196 |
-
if num_steps in ['',None]:
|
197 |
-
S.args['T'] = 20
|
198 |
-
else:
|
199 |
-
S.args['T'] = int(num_steps)
|
200 |
-
|
201 |
-
# noise
|
202 |
-
if 'normal' in noise:
|
203 |
-
S.args['sample_distribution'] = noise
|
204 |
-
S.args['sample_distribution_gmm_means'] = [0]
|
205 |
-
S.args['sample_distribution_gmm_variances'] = [1]
|
206 |
-
elif 'gmm2' in noise:
|
207 |
-
S.args['sample_distribution'] = noise
|
208 |
-
S.args['sample_distribution_gmm_means'] = [-1,1]
|
209 |
-
S.args['sample_distribution_gmm_variances'] = [1,1]
|
210 |
-
elif 'gmm3' in noise:
|
211 |
-
S.args['sample_distribution'] = noise
|
212 |
-
S.args['sample_distribution_gmm_means'] = [-1,0,1]
|
213 |
-
S.args['sample_distribution_gmm_variances'] = [1,1,1]
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
if secondary_structure not in ['',None] or helix_bias+strand_bias+loop_bias > 0:
|
218 |
-
S.args['checkpoint'] = dssp_checkpoint
|
219 |
-
S.args['d_t1d'] = 29
|
220 |
-
print('using dssp checkpoint')
|
221 |
-
else:
|
222 |
-
S.args['checkpoint'] = og_checkpoint
|
223 |
-
S.args['d_t1d'] = 24
|
224 |
-
print('using og checkpoint')
|
225 |
-
|
226 |
-
|
227 |
-
for k,v in S.args.items():
|
228 |
-
print(f"{k} --> {v}")
|
229 |
-
|
230 |
-
# init S
|
231 |
-
S.model_init()
|
232 |
-
S.diffuser_init()
|
233 |
-
S.setup()
|
234 |
-
|
235 |
-
# sampling loop
|
236 |
-
plddt_data = []
|
237 |
-
for j in range(S.max_t):
|
238 |
-
print(f'on step {j}')
|
239 |
-
output_seq, output_pdb, plddt = S.take_step_get_outputs(j)
|
240 |
-
plddt_data.append(plddt)
|
241 |
-
yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t)
|
242 |
-
|
243 |
-
output_seq, output_pdb, plddt = S.get_outputs()
|
244 |
-
|
245 |
-
return output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t)
|
246 |
-
|
247 |
-
|
248 |
-
def get_plddt_plot(plddt_data, max_t):
|
249 |
-
x = [i+1 for i in range(len(plddt_data))]
|
250 |
-
fig, ax = plt.subplots(figsize=(15,6))
|
251 |
-
ax.plot(x,plddt_data,color='#661dbf', linewidth=3,marker='o')
|
252 |
-
ax.set_xticks([i+1 for i in range(max_t)])
|
253 |
-
ax.set_yticks([(i+1)/10 for i in range(10)])
|
254 |
-
ax.set_ylim([0,1])
|
255 |
-
ax.set_ylabel('model confidence (plddt)')
|
256 |
-
ax.set_xlabel('diffusion steps (t)')
|
257 |
-
return fig
|
258 |
-
|
259 |
-
def display_pdb(path_to_pdb):
|
260 |
-
'''
|
261 |
-
#function to display pdb in py3dmol
|
262 |
-
'''
|
263 |
-
pdb = open(path_to_pdb, "r").read()
|
264 |
-
|
265 |
-
view = py3Dmol.view(width=500, height=500)
|
266 |
-
view.addModel(pdb, "pdb")
|
267 |
-
view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}})
|
268 |
-
view.zoomTo()
|
269 |
-
output = view._make_html().replace("'", '"')
|
270 |
-
print(view._make_html())
|
271 |
-
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input
|
272 |
-
|
273 |
-
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera;
|
274 |
-
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
275 |
-
allow-scripts allow-same-origin allow-popups
|
276 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
277 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
278 |
-
|
279 |
-
'''
|
280 |
-
return f"""<iframe style="width: 100%; height:700px" name="result" allow="midi; geolocation; microphone; camera;
|
281 |
-
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
282 |
-
allow-scripts allow-same-origin allow-popups
|
283 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
284 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
285 |
-
'''
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
# MOTIF SCAFFOLDING
|
290 |
-
def get_motif_preview(pdb_id, contigs):
|
291 |
-
'''
|
292 |
-
#function to display selected motif in py3dmol
|
293 |
-
'''
|
294 |
-
input_pdb = fetch_pdb(pdb_id=pdb_id.lower())
|
295 |
-
|
296 |
-
# rewrite pdb
|
297 |
-
parse = parse_pdb(input_pdb)
|
298 |
-
#output_name = './rewrite_'+input_pdb.split('/')[-1]
|
299 |
-
#writepdb(output_name, torch.tensor(parse_og['xyz']),torch.tensor(parse_og['seq']))
|
300 |
-
#parse = parse_pdb(output_name)
|
301 |
-
output_name = input_pdb
|
302 |
-
|
303 |
-
pdb = open(output_name, "r").read()
|
304 |
-
view = py3Dmol.view(width=500, height=500)
|
305 |
-
view.addModel(pdb, "pdb")
|
306 |
-
|
307 |
-
if contigs in ['',0]:
|
308 |
-
contigs = ['0']
|
309 |
-
else:
|
310 |
-
contigs = [contigs]
|
311 |
-
|
312 |
-
print('DEBUG: ',contigs)
|
313 |
-
|
314 |
-
pdb_map = get_mappings(ContigMap(parse,contigs))
|
315 |
-
print('DEBUG: ',pdb_map)
|
316 |
-
print('DEBUG: ',pdb_map['con_ref_idx0'])
|
317 |
-
roi = [x[1]-1 for x in pdb_map['con_ref_pdb_idx']]
|
318 |
-
|
319 |
-
colormap = {0:'#D3D3D3', 1:'#F74CFF'}
|
320 |
-
colors = {i+1: colormap[1] if i in roi else colormap[0] for i in range(parse['xyz'].shape[0])}
|
321 |
-
view.setStyle({"cartoon": {"colorscheme": {"prop": "resi", "map": colors}}})
|
322 |
-
view.zoomTo()
|
323 |
-
output = view._make_html().replace("'", '"')
|
324 |
-
print(view._make_html())
|
325 |
-
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input
|
326 |
-
|
327 |
-
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera;
|
328 |
-
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
329 |
-
allow-scripts allow-same-origin allow-popups
|
330 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
331 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", output_name
|
332 |
-
|
333 |
-
def fetch_pdb(pdb_id=None):
|
334 |
-
if pdb_id is None or pdb_id == "":
|
335 |
-
return None
|
336 |
-
else:
|
337 |
-
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_id}.pdb")
|
338 |
-
return f"{pdb_id}.pdb"
|
339 |
-
|
340 |
-
# MSA AND PSSM GUIDANCE
|
341 |
-
def save_pssm(file_upload):
|
342 |
-
filename = file_upload.name
|
343 |
-
orig_name = file_upload.orig_name
|
344 |
-
if filename.split('.')[-1] in ['fasta', 'a3m']:
|
345 |
-
return msa_to_pssm(file_upload)
|
346 |
-
return filename
|
347 |
-
|
348 |
-
def msa_to_pssm(msa_file):
|
349 |
-
# Define the lookup table for converting amino acids to indices
|
350 |
-
aa_to_index = {'A': 0, 'R': 1, 'N': 2, 'D': 3, 'C': 4, 'Q': 5, 'E': 6, 'G': 7, 'H': 8, 'I': 9, 'L': 10,
|
351 |
-
'K': 11, 'M': 12, 'F': 13, 'P': 14, 'S': 15, 'T': 16, 'W': 17, 'Y': 18, 'V': 19, 'X': 20, '-': 21}
|
352 |
-
# Open the FASTA file and read the sequences
|
353 |
-
records = list(SeqIO.parse(msa_file.name, "fasta"))
|
354 |
-
|
355 |
-
assert len(records) >= 1, "MSA must contain more than one protein sequecne."
|
356 |
-
|
357 |
-
first_seq = str(records[0].seq)
|
358 |
-
aligned_seqs = [first_seq]
|
359 |
-
# print(aligned_seqs)
|
360 |
-
# Perform sequence alignment using the Needleman-Wunsch algorithm
|
361 |
-
aligner = Align.PairwiseAligner()
|
362 |
-
aligner.open_gap_score = -0.7
|
363 |
-
aligner.extend_gap_score = -0.3
|
364 |
-
for record in records[1:]:
|
365 |
-
alignment = aligner.align(first_seq, str(record.seq))[0]
|
366 |
-
alignment = alignment.format().split("\n")
|
367 |
-
al1 = alignment[0]
|
368 |
-
al2 = alignment[2]
|
369 |
-
al1_fin = ""
|
370 |
-
al2_fin = ""
|
371 |
-
percent_gap = al2.count('-')/ len(al2)
|
372 |
-
if percent_gap > 0.4:
|
373 |
-
continue
|
374 |
-
for i in range(len(al1)):
|
375 |
-
if al1[i] != '-':
|
376 |
-
al1_fin += al1[i]
|
377 |
-
al2_fin += al2[i]
|
378 |
-
aligned_seqs.append(str(al2_fin))
|
379 |
-
# Get the length of the aligned sequences
|
380 |
-
aligned_seq_length = len(first_seq)
|
381 |
-
# Initialize the position scoring matrix
|
382 |
-
matrix = np.zeros((22, aligned_seq_length))
|
383 |
-
# Iterate through the aligned sequences and count the amino acids at each position
|
384 |
-
for seq in aligned_seqs:
|
385 |
-
#print(seq)
|
386 |
-
for i in range(aligned_seq_length):
|
387 |
-
if i == len(seq):
|
388 |
-
break
|
389 |
-
amino_acid = seq[i]
|
390 |
-
if amino_acid.upper() not in aa_to_index.keys():
|
391 |
-
continue
|
392 |
-
else:
|
393 |
-
aa_index = aa_to_index[amino_acid.upper()]
|
394 |
-
matrix[aa_index, i] += 1
|
395 |
-
# Normalize the counts to get the frequency of each amino acid at each position
|
396 |
-
matrix /= len(aligned_seqs)
|
397 |
-
print(len(aligned_seqs))
|
398 |
-
matrix[20:,]=0
|
399 |
-
|
400 |
-
outdir = ".".join(msa_file.name.split('.')[:-1]) + ".csv"
|
401 |
-
np.savetxt(outdir, matrix[:21,:].T, delimiter=",")
|
402 |
-
return outdir
|
403 |
-
|
404 |
-
def get_pssm(fasta_msa, input_pssm):
|
405 |
-
|
406 |
-
if input_pssm not in ['',None]:
|
407 |
-
outdir = input_pssm.name
|
408 |
-
else:
|
409 |
-
outdir = save_pssm(fasta_msa)
|
410 |
-
|
411 |
-
pssm = np.loadtxt(outdir, delimiter=",", dtype=float)
|
412 |
-
fig, ax = plt.subplots(figsize=(15,6))
|
413 |
-
plt.imshow(torch.permute(torch.tensor(pssm),(1,0)))
|
414 |
-
|
415 |
-
return fig, outdir
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
# 히어로 능력치 계산 함수 추가
|
421 |
-
def calculate_hero_stats(helix_bias, strand_bias, loop_bias, hydrophobic_score):
|
422 |
-
stats = {
|
423 |
-
'strength': strand_bias * 20, # 베타시트 구조 기반
|
424 |
-
'flexibility': helix_bias * 20, # 알파헬릭스 구조 기반
|
425 |
-
'speed': loop_bias * 5, # 루프 구조 기반
|
426 |
-
'defense': abs(hydrophobic_score) if hydrophobic_score else 0
|
427 |
-
}
|
428 |
-
return stats
|
429 |
-
|
430 |
-
##toggle options
|
431 |
-
def toggle_seq_input(choice):
|
432 |
-
if choice == "protein length":
|
433 |
-
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
|
434 |
-
elif choice == "custom sequence":
|
435 |
-
return gr.update(visible=False, value=None), gr.update(visible=True, value=None)
|
436 |
-
|
437 |
-
def toggle_secondary_structure(choice):
|
438 |
-
if choice == "sliders":
|
439 |
-
return gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=False, value=None)
|
440 |
-
elif choice == "explicit":
|
441 |
-
return gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=True, value=None)
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
def create_radar_chart(stats):
|
446 |
-
# 레이더 차트 생성 로직
|
447 |
-
categories = list(stats.keys())
|
448 |
-
values = list(stats.values())
|
449 |
-
|
450 |
-
fig = go.Figure(data=go.Scatterpolar(
|
451 |
-
r=values,
|
452 |
-
theta=categories,
|
453 |
-
fill='toself'
|
454 |
-
))
|
455 |
-
|
456 |
-
fig.update_layout(
|
457 |
-
polar=dict(
|
458 |
-
radialaxis=dict(
|
459 |
-
visible=True,
|
460 |
-
range=[0, 1]
|
461 |
-
)),
|
462 |
-
showlegend=False
|
463 |
-
)
|
464 |
-
|
465 |
-
return fig
|
466 |
-
|
467 |
-
def generate_hero_description(name, stats, abilities):
|
468 |
-
# 히어로 설명 생성 로직
|
469 |
-
description = f"""
|
470 |
-
히어로 이름: {name}
|
471 |
-
|
472 |
-
주요 능력:
|
473 |
-
- 근력: {'★' * int(stats['strength'] * 5)}
|
474 |
-
- 유연성: {'★' * int(stats['flexibility'] * 5)}
|
475 |
-
- 스피드: {'★' * int(stats['speed'] * 5)}
|
476 |
-
- 방어력: {'★' * int(stats['defense'] * 5)}
|
477 |
-
|
478 |
-
특수 능력: {', '.join(abilities)}
|
479 |
-
"""
|
480 |
-
return description
|
481 |
-
|
482 |
-
def combined_generation(name, strength, flexibility, speed, defense, size, abilities,
|
483 |
-
sequence, seq_len, helix_bias, strand_bias, loop_bias,
|
484 |
-
secondary_structure, aa_bias, aa_bias_potential,
|
485 |
-
num_steps, noise, hydrophobic_target_score, hydrophobic_potential,
|
486 |
-
contigs, pssm, seq_mask, str_mask, rewrite_pdb):
|
487 |
-
try:
|
488 |
-
# protein_diffusion_model 실행
|
489 |
-
generator = protein_diffusion_model(
|
490 |
-
sequence=None,
|
491 |
-
seq_len=size, # 히어로 크기를 seq_len으로 사용
|
492 |
-
helix_bias=flexibility, # 히어로 유연성을 helix_bias로 사용
|
493 |
-
strand_bias=strength, # 히어로 강도를 strand_bias로 사용
|
494 |
-
loop_bias=speed, # 히어로 스피드를 loop_bias로 사용
|
495 |
-
secondary_structure=None,
|
496 |
-
aa_bias=None,
|
497 |
-
aa_bias_potential=None,
|
498 |
-
num_steps="25",
|
499 |
-
noise="normal",
|
500 |
-
hydrophobic_target_score=str(-defense), # 히어로 방어력을 hydrophobic score로 사용
|
501 |
-
hydrophobic_potential="2",
|
502 |
-
contigs=None,
|
503 |
-
pssm=None,
|
504 |
-
seq_mask=None,
|
505 |
-
str_mask=None,
|
506 |
-
rewrite_pdb=None
|
507 |
-
)
|
508 |
-
|
509 |
-
# 마지막 결과 가져오기
|
510 |
-
final_result = None
|
511 |
-
for result in generator:
|
512 |
-
final_result = result
|
513 |
-
|
514 |
-
if final_result is None:
|
515 |
-
raise Exception("생성 결과가 없습니다")
|
516 |
-
|
517 |
-
output_seq, output_pdb, structure_view, plddt_plot = final_result
|
518 |
-
|
519 |
-
# 히어로 능력치 계산
|
520 |
-
stats = calculate_hero_stats(flexibility, strength, speed, defense)
|
521 |
-
|
522 |
-
# 모든 결과 반환
|
523 |
-
return (
|
524 |
-
create_radar_chart(stats), # 능력치 차트
|
525 |
-
generate_hero_description(name, stats, abilities), # 히어로 설명
|
526 |
-
output_seq, # 단백질 서열
|
527 |
-
output_pdb, # PDB 파일
|
528 |
-
structure_view, # 3D 구조
|
529 |
-
plddt_plot # 신뢰도 차트
|
530 |
-
)
|
531 |
-
except Exception as e:
|
532 |
-
print(f"Error in combined_generation: {str(e)}")
|
533 |
-
return (
|
534 |
-
None,
|
535 |
-
f"에러: {str(e)}",
|
536 |
-
None,
|
537 |
-
None,
|
538 |
-
gr.HTML("에러가 발생했습니다"),
|
539 |
-
None
|
540 |
-
)
|
541 |
-
|
542 |
-
with gr.Blocks(theme='ParityError/Interstellar') as demo:
|
543 |
-
with gr.Row():
|
544 |
-
with gr.Column():
|
545 |
-
gr.Markdown("# 🦸♂️ 슈퍼히어로 단백질 만들기")
|
546 |
-
|
547 |
-
with gr.Tabs():
|
548 |
-
with gr.TabItem("🦸♂️ 히어로 디자인"):
|
549 |
-
gr.Markdown("""
|
550 |
-
### ✨ 당신만의 특별한 히어로를 만들어보세요!
|
551 |
-
각 능력치를 조절하면 히어로의 DNA가 자동으로 설계됩니다.
|
552 |
-
""")
|
553 |
-
|
554 |
-
# 히어로 기본 정보
|
555 |
-
hero_name = gr.Textbox(
|
556 |
-
label="히어로 이름",
|
557 |
-
placeholder="당신의 히어로 이름을 지어주세요!",
|
558 |
-
info="히어로의 정체성을 나타내는 이름을 입력하세요"
|
559 |
-
)
|
560 |
-
|
561 |
-
# 능력치 설정
|
562 |
-
gr.Markdown("### 💪 히어로 능력치 설정")
|
563 |
-
with gr.Row():
|
564 |
-
strength = gr.Slider(
|
565 |
-
minimum=0.0, maximum=0.05,
|
566 |
-
label="💪 초강력(근력)",
|
567 |
-
value=0.02,
|
568 |
-
info="단단한 베타시트 구조로 강력한 힘을 생성합니다"
|
569 |
-
)
|
570 |
-
flexibility = gr.Slider(
|
571 |
-
minimum=0.0, maximum=0.05,
|
572 |
-
label="🤸♂️ 유연성",
|
573 |
-
value=0.02,
|
574 |
-
info="나선형 알파헬릭스 구조로 유연한 움직임을 가능하게 합니다"
|
575 |
-
)
|
576 |
-
|
577 |
-
with gr.Row():
|
578 |
-
speed = gr.Slider(
|
579 |
-
minimum=0.0, maximum=0.20,
|
580 |
-
label="⚡ 스피드",
|
581 |
-
value=0.1,
|
582 |
-
info="루프 구조로 빠른 움직임을 구현합니다"
|
583 |
-
)
|
584 |
-
defense = gr.Slider(
|
585 |
-
minimum=-10, maximum=10,
|
586 |
-
label="🛡️ 방어력",
|
587 |
-
value=0,
|
588 |
-
info="음수: 수중 활동에 특화, 양수: 지상 활동에 특화"
|
589 |
-
)
|
590 |
-
|
591 |
-
# 히어로 크기 설정
|
592 |
-
hero_size = gr.Slider(
|
593 |
-
minimum=50, maximum=200,
|
594 |
-
label="📏 히어로 크기",
|
595 |
-
value=100,
|
596 |
-
info="히어로의 전체적인 크기를 결정합니다"
|
597 |
-
)
|
598 |
-
|
599 |
-
# 특수 능력 설정
|
600 |
-
with gr.Accordion("🌟 특수 능력", open=False):
|
601 |
-
gr.Markdown("""
|
602 |
-
특수 능력을 선택하면 히어로의 DNA에 특별한 구조가 추가됩니다.
|
603 |
-
- 자가 회복: 단백질 구조 복구 능력 강화
|
604 |
-
- 원거리 공격: 특수한 구조적 돌출부 형성
|
605 |
-
- 방어막 생성: 안정적인 보호층 구조 생성
|
606 |
-
""")
|
607 |
-
special_ability = gr.CheckboxGroup(
|
608 |
-
choices=["자가 회복", "원거리 공격", "방어막 생성"],
|
609 |
-
label="특수 능력 선택"
|
610 |
-
)
|
611 |
-
|
612 |
-
# 생성 버튼
|
613 |
-
create_btn = gr.Button("🧬 히어로 생성!", variant="primary", scale=2)
|
614 |
-
|
615 |
-
with gr.TabItem("🧬 히어로 DNA 설계"):
|
616 |
-
gr.Markdown("""
|
617 |
-
### 🧪 히어로 DNA 고급 설정
|
618 |
-
히어로의 유전자 구조를 더 세밀하게 조정할 수 있습니다.
|
619 |
-
""")
|
620 |
-
|
621 |
-
seq_opt = gr.Radio(
|
622 |
-
["자동 설계", "직접 입력"],
|
623 |
-
label="DNA 설계 방식",
|
624 |
-
value="자동 설계"
|
625 |
-
)
|
626 |
-
|
627 |
-
sequence = gr.Textbox(
|
628 |
-
label="DNA 시퀀스",
|
629 |
-
lines=1,
|
630 |
-
placeholder='사용 가능한 아미노산: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y (X는 무작위)',
|
631 |
-
visible=False
|
632 |
-
)
|
633 |
-
seq_len = gr.Slider(
|
634 |
-
minimum=5.0, maximum=250.0,
|
635 |
-
label="DNA 길이",
|
636 |
-
value=100,
|
637 |
-
visible=True
|
638 |
-
)
|
639 |
-
|
640 |
-
with gr.Accordion(label='🦴 골격 구조 설정', open=True):
|
641 |
-
gr.Markdown("""
|
642 |
-
히어로의 기본 골격 구조를 설정합니다.
|
643 |
-
- 나선형 구조: 유연하고 탄력있는 움직임
|
644 |
-
- 병풍형 구조: 단단하고 강력한 힘
|
645 |
-
- 고리형 구조: 빠르고 민첩한 움직임
|
646 |
-
""")
|
647 |
-
sec_str_opt = gr.Radio(
|
648 |
-
["슬라이더로 설정", "직접 입력"],
|
649 |
-
label="골격 구조 설정 방식",
|
650 |
-
value="슬라이더로 설정"
|
651 |
-
)
|
652 |
-
|
653 |
-
secondary_structure = gr.Textbox(
|
654 |
-
label="골격 구조",
|
655 |
-
lines=1,
|
656 |
-
placeholder='H:나선형, S:병풍형, L:고리형, X:자동설정',
|
657 |
-
visible=False
|
658 |
-
)
|
659 |
-
|
660 |
-
with gr.Column():
|
661 |
-
helix_bias = gr.Slider(
|
662 |
-
minimum=0.0, maximum=0.05,
|
663 |
-
label="나선형 구조 비율",
|
664 |
-
visible=True
|
665 |
-
)
|
666 |
-
strand_bias = gr.Slider(
|
667 |
-
minimum=0.0, maximum=0.05,
|
668 |
-
label="병풍형 구조 비율",
|
669 |
-
visible=True
|
670 |
-
)
|
671 |
-
loop_bias = gr.Slider(
|
672 |
-
minimum=0.0, maximum=0.20,
|
673 |
-
label="고리형 구조 비율",
|
674 |
-
visible=True
|
675 |
-
)
|
676 |
-
|
677 |
-
# 아미노산 구성 설정 추가
|
678 |
-
with gr.Accordion(label='🧬 DNA 구성 설정', open=False):
|
679 |
-
gr.Markdown("""
|
680 |
-
특정 아미노산의 비율을 조절하여 히어로의 특성을 강화할 수 있습니다.
|
681 |
-
예시: W0.2,E0.1 (트립토판 20%, 글루탐산 10%)
|
682 |
-
""")
|
683 |
-
with gr.Row():
|
684 |
-
aa_bias = gr.Textbox(
|
685 |
-
label="아미노산 비율",
|
686 |
-
lines=1,
|
687 |
-
placeholder='예시: W0.2,E0.1'
|
688 |
-
)
|
689 |
-
aa_bias_potential = gr.Textbox(
|
690 |
-
label="강화 정도",
|
691 |
-
lines=1,
|
692 |
-
placeholder='1.0-5.0 사이 값 입력'
|
693 |
-
)
|
694 |
-
|
695 |
-
# 환경 적응력 설정 추가
|
696 |
-
with gr.Accordion(label='🌍 환경 적응력 설정', open=False):
|
697 |
-
gr.Markdown("""
|
698 |
-
히어로의 환경 적응력을 조절합니다.
|
699 |
-
음수: 수중 활동에 특화, 양수: 지상 활동에 특화
|
700 |
-
""")
|
701 |
-
with gr.Row():
|
702 |
-
hydrophobic_target_score = gr.Textbox(
|
703 |
-
label="환경 적응 점수",
|
704 |
-
lines=1,
|
705 |
-
placeholder='예시: -5 (수중 활동에 특화)'
|
706 |
-
)
|
707 |
-
hydrophobic_potential = gr.Textbox(
|
708 |
-
label="적응력 강화 정도",
|
709 |
-
lines=1,
|
710 |
-
placeholder='1.0-2.0 사이 값 입력'
|
711 |
-
)
|
712 |
-
|
713 |
-
# 확산 매개변수 설정
|
714 |
-
with gr.Accordion(label='⚙️ 고급 설정', open=False):
|
715 |
-
gr.Markdown("""
|
716 |
-
DNA 생성 과정의 세부 매개변수를 조정합니다.
|
717 |
-
""")
|
718 |
-
with gr.Row():
|
719 |
-
num_steps = gr.Textbox(
|
720 |
-
label="생성 단계",
|
721 |
-
lines=1,
|
722 |
-
placeholder='25 이하 권장'
|
723 |
-
)
|
724 |
-
noise = gr.Dropdown(
|
725 |
-
['normal','gmm2 [-1,1]','gmm3 [-1,0,1]'],
|
726 |
-
label='노이즈 타입',
|
727 |
-
value='normal'
|
728 |
-
)
|
729 |
-
|
730 |
-
with gr.TabItem("🧪 히어로 유전자 강화"):
|
731 |
-
gr.Markdown("""
|
732 |
-
### ⚡ 기존 히어로의 DNA 활용
|
733 |
-
강력한 히어로의 DNA 일부를 새로운 히어로에게 이식합니다.
|
734 |
-
""")
|
735 |
-
|
736 |
-
gr.Markdown("공개된 히어로 DNA 데이터베이스에서 코드를 찾을 수 있습니다")
|
737 |
-
pdb_id_code = gr.Textbox(
|
738 |
-
label="히어로 DNA 코드",
|
739 |
-
lines=1,
|
740 |
-
placeholder='기존 히어로의 DNA 코드를 입력하세요 (예: 1DPX)'
|
741 |
-
)
|
742 |
-
|
743 |
-
gr.Markdown("이식하고 싶은 DNA 영역을 선택하고 새로운 DNA를 추가할 수 있습니다")
|
744 |
-
contigs = gr.Textbox(
|
745 |
-
label="이식할 DNA 영역",
|
746 |
-
lines=1,
|
747 |
-
placeholder='예시: 15,A3-10,20-30'
|
748 |
-
)
|
749 |
-
|
750 |
-
with gr.Row():
|
751 |
-
seq_mask = gr.Textbox(
|
752 |
-
label='능력 재설계',
|
753 |
-
lines=1,
|
754 |
-
placeholder='선택한 영역의 능력을 새롭게 디자인'
|
755 |
-
)
|
756 |
-
str_mask = gr.Textbox(
|
757 |
-
label='구조 재설계',
|
758 |
-
lines=1,
|
759 |
-
placeholder='선택한 영역의 구조를 새롭게 디자인'
|
760 |
-
)
|
761 |
-
|
762 |
-
preview_viewer = gr.HTML()
|
763 |
-
rewrite_pdb = gr.File(label='히어로 DNA 파일')
|
764 |
-
preview_btn = gr.Button("🔍 미리보기", variant="secondary")
|
765 |
-
|
766 |
-
with gr.TabItem("👑 히어로 가문"):
|
767 |
-
gr.Markdown("""
|
768 |
-
### 🏰 위대한 히어로 가문의 유산
|
769 |
-
강력한 히어로 가문의 특성을 계승하여 새로운 히어로를 만듭니다.
|
770 |
-
""")
|
771 |
-
|
772 |
-
with gr.Row():
|
773 |
-
with gr.Column():
|
774 |
-
gr.Markdown("히어로 가문의 DNA 정보가 담긴 파일을 업로드하세요")
|
775 |
-
fasta_msa = gr.File(label='가문 DNA 데이터')
|
776 |
-
with gr.Column():
|
777 |
-
gr.Markdown("이미 분석된 가문 특성 데이터가 있다면 업로드하세요")
|
778 |
-
input_pssm = gr.File(label='가문 특성 데이터')
|
779 |
-
|
780 |
-
pssm = gr.File(label='분석된 가문 특성')
|
781 |
-
pssm_view = gr.Plot(label='가문 특성 분석 결과')
|
782 |
-
pssm_gen_btn = gr.Button("✨ 가문 특성 분석", variant="secondary")
|
783 |
-
|
784 |
-
with gr.Column():
|
785 |
-
gr.Markdown("## 🦸♂️ 히어로 프로필")
|
786 |
-
|
787 |
-
# 능력치 레이더 차트
|
788 |
-
hero_stats = gr.Plot(label="능력치 분석")
|
789 |
-
|
790 |
-
# 히어로 설명
|
791 |
-
hero_description = gr.Textbox(label="히어로 특성", lines=3)
|
792 |
-
|
793 |
-
gr.Markdown("## 🧬 히어로 DNA 분석 결과")
|
794 |
-
gr.Markdown("#### ⚡ DNA 안정성 점수")
|
795 |
-
plddt_plot = gr.Plot(label='안정성 분석')
|
796 |
-
gr.Markdown("#### 📝 DNA 시퀀스")
|
797 |
-
output_seq = gr.Textbox(label="DNA 서열")
|
798 |
-
gr.Markdown("#### 💾 DNA 데이터")
|
799 |
-
output_pdb = gr.File(label="DNA 파일")
|
800 |
-
gr.Markdown("#### 🔬 DNA 구조")
|
801 |
-
output_viewer = gr.HTML()
|
802 |
-
|
803 |
-
# 이벤트 연결
|
804 |
-
preview_btn.click(get_motif_preview,[pdb_id_code, contigs],[preview_viewer, rewrite_pdb])
|
805 |
-
pssm_gen_btn.click(get_pssm,[fasta_msa,input_pssm],[pssm_view, pssm])
|
806 |
-
|
807 |
-
# generate_hero와 protein_diffusion_model을 combined_generation으로 통합
|
808 |
-
create_btn.click(
|
809 |
-
combined_generation,
|
810 |
-
inputs=[
|
811 |
-
hero_name, strength, flexibility, speed, defense, hero_size, special_ability,
|
812 |
-
sequence, seq_len, helix_bias, strand_bias, loop_bias,
|
813 |
-
secondary_structure, aa_bias, aa_bias_potential,
|
814 |
-
num_steps, noise, hydrophobic_target_score, hydrophobic_potential,
|
815 |
-
contigs, pssm, seq_mask, str_mask, rewrite_pdb
|
816 |
-
],
|
817 |
-
outputs=[
|
818 |
-
hero_stats,
|
819 |
-
hero_description,
|
820 |
-
output_seq,
|
821 |
-
output_pdb,
|
822 |
-
output_viewer,
|
823 |
-
plddt_plot
|
824 |
-
]
|
825 |
-
)
|
826 |
-
|
827 |
-
demo.queue()
|
828 |
-
demo.launch(debug=True)
|
|
|
1 |
+
import os
|
2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|