Spaces:
Sleeping
Sleeping
File size: 10,224 Bytes
981e41f 33c0d41 981e41f 0a75292 981e41f 0a75292 981e41f 0a75292 981e41f 0a75292 981e41f 0a75292 981e41f 0a75292 981e41f 33c0d41 981e41f 39b8f8b 981e41f 33c0d41 64486dd 33c0d41 981e41f f38446b 981e41f f38446b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import streamlit as st
import os
import json
from datetime import datetime
import PyPDF2
# import google. as genai
from google import genai
# --- Configuration and Setup ---
# Use a writable directory like /tmp for containerized environments
CLASSROOMS_DIR = "/tmp/classrooms"
if not os.path.exists(CLASSROOMS_DIR):
os.makedirs(CLASSROOMS_DIR)
# --- Helper Functions ---
def extract_text_from_pdf(pdf_files):
"""
Extracts text from a list of uploaded PDF files with improved error handling.
"""
full_text = ""
files_processed = 0
if not pdf_files:
return ""
for pdf_file in pdf_files:
try:
# The UploadedFile object is a file-like object. Rewind it first.
pdf_file.seek(0)
pdf_reader = PyPDF2.PdfReader(pdf_file)
if not pdf_reader.pages:
st.warning(f"Warning: '{pdf_file.name}' contains no pages.")
continue
page_text = ""
for page in pdf_reader.pages:
text = page.extract_text()
if text:
page_text += text + "\n"
if page_text:
full_text += page_text
files_processed += 1
else:
st.warning(f"Warning: Could not extract any text from '{pdf_file.name}'. The file might be image-based or have an unusual format.")
except PyPDF2.errors.PdfReadError:
st.error(f"Error: '{pdf_file.name}' is not a valid PDF file or is corrupted.")
except Exception as e:
st.error(f"An unexpected error occurred while processing {pdf_file.name}: {e}. The file might be password-protected.")
if files_processed > 0:
st.info(f"Successfully extracted text from {files_processed} out of {len(pdf_files)} file(s).")
return full_text
def save_classroom_data(class_name, api_key, context):
"""Saves the classroom data (context, API key, and chat log)."""
class_dir = os.path.join(CLASSROOMS_DIR, class_name)
if not os.path.exists(class_dir):
os.makedirs(class_dir)
# Save context
with open(os.path.join(class_dir, "context.txt"), "w", encoding="utf-8") as f:
f.write(context)
# Save API key
with open(os.path.join(class_dir, "api_key.txt"), "w") as f:
f.write(api_key)
# Initialize chat log
with open(os.path.join(class_dir, "chat_log.json"), "w") as f:
json.dump([], f)
return True
def get_gemini_response(api_key, context, chat_history, question):
"""Generates a response from the Gemini API based on the context."""
try:
# genai.configure(api_key=api_key)
client = genai.Client(api_key=api_key)
# model = genai.GenerativeModel('gemini-2.5-flash')
# Construct a more detailed prompt for the model
prompt = (
"You are a helpful classroom assistant. Your role is to answer questions based ONLY on the provided context. "
# "If the answer is not found in the context, you must state that you cannot answer the question based on the provided material. "
"Do not use any external knowledge.\n\n"
f"**Context:**\n{context}\n\n"
"**Chat History:**\n"
)
for message in chat_history:
prompt += f"{message['role']}: {message['content']}\n"
prompt += f"**New Question:**\n{question}\n\n**Answer:**"
response = client.models.generate_content(
model="gemini-2.5-pro", contents=prompt
)
# response = model.generate_content(prompt)
return response.text
except Exception as e:
return f"An error occurred with the Gemini API: {e}"
def log_interaction(class_name, user_query, bot_response):
"""Logs the student's interaction in the classroom's JSON file."""
log_file = os.path.join(CLASSROOMS_DIR, class_name, "chat_log.json")
try:
with open(log_file, "r+") as f:
logs = json.load(f)
logs.append({
"timestamp": datetime.now().isoformat(),
"user_query": user_query,
"bot_response": bot_response
})
f.seek(0)
json.dump(logs, f, indent=4)
except (FileNotFoundError, json.JSONDecodeError):
# If file is empty or corrupt, start a new log
with open(log_file, "w") as f:
json.dump([{
"timestamp": datetime.now().isoformat(),
"user_query": user_query,
"bot_response": bot_response
}], f, indent=4)
# --- Streamlit UI ---
st.set_page_config(page_title="Classroom Chatbot", layout="wide")
# Initialize session state variables
if 'role' not in st.session_state:
st.session_state.role = None
if 'class_name' not in st.session_state:
st.session_state.class_name = None
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# --- Main App Logic ---
# Role Selection
if st.session_state.role is None:
st.title("Welcome to the Classroom Chatbot! π")
st.write("Please select your role to begin.")
col1, col2 = st.columns(2)
with col1:
if st.button("I am a Faculty Member", use_container_width=True):
st.session_state.role = "Faculty"
st.rerun()
with col2:
if st.button("I am a Student", use_container_width=True):
st.session_state.role = "Student"
st.rerun()
# --- Faculty View ---
elif st.session_state.role == "Faculty":
st.title("π Faculty Dashboard")
st.header("Create a New Classroom")
# Input fields outside of form for better file handling
class_name = st.text_input("Classroom Name / Code", help="A unique name for your class, e.g., 'CS101-Fall24'")
api_key = st.text_input("Google Gemini API Key", type="password", help="Your API key will be stored securely for this classroom's use.")
uploaded_files = st.file_uploader(
"Upload Course Materials (PDFs only)",
type="pdf",
accept_multiple_files=True,
help="Select one or more PDF files containing course materials"
)
# Show uploaded files
if uploaded_files:
st.write("**Uploaded Files:**")
for file in uploaded_files:
st.write(f"- {file.name} ({file.size} bytes)")
# Create classroom button
if st.button("Create Classroom", type="primary"):
if not class_name or not api_key or not uploaded_files:
st.warning("Please fill out all fields and upload at least one document.")
elif os.path.exists(os.path.join(CLASSROOMS_DIR, class_name)):
st.error(f"A classroom with the name '{class_name}' already exists. Please choose a different name.")
else:
with st.spinner("Processing documents and setting up classroom..."):
context = extract_text_from_pdf(uploaded_files)
if context:
save_classroom_data(class_name, api_key, context)
st.success(f"Classroom '{class_name}' created successfully!")
st.info(f"Students can now join using the code: **{class_name}**")
else:
st.error("Could not extract any text from the uploaded PDFs. Please check the files and try again.")
if st.button("Go Back to Role Selection"):
for key in st.session_state.keys():
del st.session_state[key]
st.rerun()
# --- Student View ---
elif st.session_state.role == "Student":
st.title("π§βπ Student Portal")
# Student joins a class
if st.session_state.class_name is None:
st.header("Join a Classroom")
class_name_input = st.text_input("Enter the Classroom Code provided by your faculty:")
if st.button("Join"):
class_dir = os.path.join(CLASSROOMS_DIR, class_name_input)
if os.path.isdir(class_dir):
st.session_state.class_name = class_name_input
st.success(f"Successfully joined classroom: {class_name_input}")
st.rerun()
else:
st.error("Invalid classroom code. Please check with your faculty.")
if st.button("Go Back to Role Selection"):
for key in st.session_state.keys():
del st.session_state[key]
st.rerun()
# Chat interface for joined students
else:
st.header(f"Chatbot for: {st.session_state.class_name}")
st.markdown("Ask questions about the course materials provided by your faculty.")
# Load classroom data
class_dir = os.path.join(CLASSROOMS_DIR, st.session_state.class_name)
try:
with open(os.path.join(class_dir, "context.txt"), "r", encoding="utf-8") as f:
context = f.read()
with open(os.path.join(class_dir, "api_key.txt"), "r") as f:
api_key = f.read().strip()
except FileNotFoundError:
st.error("Classroom data is missing. Please contact your faculty.")
st.stop()
# Display chat history
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("What is your question?"):
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Get bot response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = get_gemini_response(api_key, context, st.session_state.chat_history, prompt)
st.markdown(response)
# Add bot response to chat history and log it
st.session_state.chat_history.append({"role": "assistant", "content": response})
log_interaction(st.session_state.class_name, prompt, response)
if st.button("Leave Classroom"):
st.session_state.class_name = None
st.session_state.chat_history = []
st.rerun() |