File size: 19,505 Bytes
da92c86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import gradio as gr
import pandas as pd
import os
import matplotlib.pyplot as plt
import io
from PIL import Image
import base64
import re
import numpy as np
from llama_index.llms.groq import Groq
from llama_index.core.query_pipeline import (
QueryPipeline as QP,
Link,
InputComponent,
)
from llama_index.experimental.query_engine.pandas import (
PandasInstructionParser,
)
from llama_index.core import PromptTemplate
# Example datasets
EXAMPLE_DATASETS = {
"Hotel Bookings": "hotel_bookings.csv",
}
def load_dataframe(file_path):
try:
if isinstance(file_path, str):
# If it's a URL or file path
df = pd.read_csv(file_path)
else:
# If it's an uploaded file
df = pd.read_csv(file_path.name)
return df, f"Successfully loaded dataset with {df.shape[0]} rows and {df.shape[1]} columns."
except Exception as e:
return None, f"Error loading dataset: {str(e)}"
def create_query_pipeline(df, api_key, model="llama-3.3-70b-versatile"):
# Create Groq LLM with the provided API key
try:
llm = Groq(model=model, api_key=api_key)
except Exception as e:
return None, f"Error initializing Groq LLM: {str(e)}"
instruction_str = (
"1. Convert the query to executable Python code using Pandas.\n"
"2. The final line of code should be a Python expression that can be called with the `eval()` function.\n"
"3. The code should represent a solution to the query.\n"
"4. PRINT ONLY THE EXPRESSION.\n"
"5. Do not quote the expression.\n"
)
pandas_prompt_str = (
"You are working with a pandas dataframe in Python.\n"
"The name of the dataframe is `df`.\n"
"This is the result of `print(df.head())`:\n"
"{df_str}\n\n"
"Follow these instructions:\n"
"{instruction_str}\n"
"Query: {query_str}\n\n"
"Expression:"
)
response_synthesis_prompt_str = (
"Given an input question, synthesize a response from the query results.\n"
"Query: {query_str}\n\n"
"Pandas Instructions (optional):\n{pandas_instructions}\n\n"
"Pandas Output: {pandas_output}\n\n"
"Response: "
)
pandas_prompt = PromptTemplate(pandas_prompt_str).partial_format(
instruction_str=instruction_str, df_str=df.head(5)
)
pandas_output_parser = PandasInstructionParser(df)
response_synthesis_prompt = PromptTemplate(response_synthesis_prompt_str)
qp = QP(
modules={
"input": InputComponent(),
"pandas_prompt": pandas_prompt,
"llm1": llm,
"pandas_output_parser": pandas_output_parser,
"response_synthesis_prompt": response_synthesis_prompt,
"llm2": llm,
},
verbose=True,
)
qp.add_chain(["input", "pandas_prompt", "llm1", "pandas_output_parser"])
qp.add_links(
[
Link("input", "response_synthesis_prompt", dest_key="query_str"),
Link(
"llm1", "response_synthesis_prompt", dest_key="pandas_instructions"
),
Link(
"pandas_output_parser",
"response_synthesis_prompt",
dest_key="pandas_output",
),
]
)
qp.add_link("response_synthesis_prompt", "llm2")
return qp, "Query pipeline created successfully!"
def enhance_visualization(df, query):
"""
Create an enhanced visualization based on the dataframe and query
This function attempts to create a better visualization with proper labels and formatting
"""
try:
# Close any existing figures to avoid conflicts
plt.close('all')
# Create a new figure with larger size for better quality
plt.figure(figsize=(12, 8), dpi=100)
# Time-related visualization handling (for bookings over time, trends, etc.)
if any(term in query.lower() for term in ['trend', 'time', 'year', 'month', 'booking', 'reservation']):
# Try to detect date columns
date_cols = [col for col in df.columns if any(term in col.lower() for term in
['date', 'year', 'month', 'time', 'arrival', 'reservation'])]
if 'arrival_date_year' in df.columns and 'arrival_date_month' in df.columns:
try:
# Create a year-month based visualization
# Convert month names to numbers for sorting
month_order = {
'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6,
'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12
}
# Count bookings by year and month
booking_counts = df.groupby(['arrival_date_year', 'arrival_date_month']).size().reset_index(name='count')
# Add month order for sorting
booking_counts['month_order'] = booking_counts['arrival_date_month'].map(month_order)
booking_counts = booking_counts.sort_values(['arrival_date_year', 'month_order'])
# Create pivot table for visualization
pivot_data = booking_counts.pivot(index='arrival_date_year', columns='arrival_date_month', values='count')
# Reorder columns by month
months = sorted(booking_counts['arrival_date_month'].unique(), key=lambda x: month_order.get(x, 13))
if len(months) > 0: # Check if the months list is not empty
pivot_data = pivot_data[months]
# Plot the data
ax = pivot_data.plot(kind='bar', figsize=(14, 8), width=0.8)
# Enhance the plot
plt.title('Bookings by Month and Year', fontsize=16)
plt.xlabel('Year', fontsize=14)
plt.ylabel('Number of Bookings', fontsize=14)
plt.legend(title='Month', fontsize=12)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
# Add value labels on top of bars
for container in ax.containers:
ax.bar_label(container, fontsize=9, fmt='%d')
else:
return None # No months data found
except Exception as e:
print(f"Error in time visualization: {str(e)}")
return None
elif len(date_cols) > 0 and any(col in df.columns for col in date_cols):
try:
# Handle other time-based visualizations
date_col = [col for col in date_cols if col in df.columns][0]
df_count = df.groupby(date_col).size().reset_index(name='count')
plt.bar(df_count[date_col], df_count['count'], color='steelblue')
plt.title(f'Distribution by {date_col}', fontsize=16)
plt.xlabel(date_col, fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
except Exception as e:
print(f"Error in date column visualization: {str(e)}")
return None
else:
# Default time visualization if we can't find specific columns
return None # Let matplotlib handle it
# Distribution visualization (for questions about distributions)
elif any(term in query.lower() for term in ['distribution', 'histogram', 'spread']):
try:
numeric_cols = df.select_dtypes(include=['number']).columns.tolist()
if len(numeric_cols) > 0:
# Choose a relevant column based on query or the first numeric column
target_col = None
for col in numeric_cols:
if col.lower() in query.lower():
target_col = col
break
if target_col is None and numeric_cols:
target_col = numeric_cols[0]
if target_col:
# Create histogram
plt.hist(df[target_col].dropna(), bins=30, color='steelblue', edgecolor='black', alpha=0.7)
plt.title(f'Distribution of {target_col}', fontsize=16)
plt.xlabel(target_col, fontsize=14)
plt.ylabel('Frequency', fontsize=14)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
else:
return None # Let matplotlib handle it
else:
return None # Let matplotlib handle it
except Exception as e:
print(f"Error in distribution visualization: {str(e)}")
return None
# Comparison visualization (for questions comparing categories)
elif any(term in query.lower() for term in ['compare', 'comparison', 'versus', 'vs', 'most', 'least']):
try:
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
if len(categorical_cols) > 0:
# Choose a relevant column based on query or the first categorical column
target_col = None
for col in categorical_cols:
if col.lower() in query.lower():
target_col = col
break
if target_col is None and categorical_cols:
target_col = categorical_cols[0]
if target_col:
# Get top categories by count
top_categories = df[target_col].value_counts().nlargest(10)
# Create bar chart
plt.bar(top_categories.index, top_categories.values, color='steelblue')
plt.title(f'Top Categories by {target_col}', fontsize=16)
plt.xlabel(target_col, fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
else:
return None # Let matplotlib handle it
else:
return None # Let matplotlib handle it
except Exception as e:
print(f"Error in comparison visualization: {str(e)}")
return None
else:
# For other types of queries, let the default matplotlib handle it
return None
# Save figure to buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Create an image from the buffer
img = Image.open(buf)
plt.close('all') # Close the figure to free memory
return img
except Exception as e:
print(f"Error in enhance_visualization: {str(e)}")
plt.close('all') # Make sure to close any figures in case of error
return None
def process_query(query, api_key, df, model_choice):
if df is None:
return "Please load a dataset first.", None
if not api_key:
return "Please provide your Groq API key.", None
try:
# First, try to create an enhanced visualization based on the query
enhanced_img = enhance_visualization(df, query)
# Create and run the query pipeline
pipeline, message = create_query_pipeline(df, api_key, model_choice)
if pipeline is None:
return message, None
# Run the query
response = pipeline.run(query_str=query)
# If we already have an enhanced visualization, use it
if enhanced_img is not None:
return response.message.content, enhanced_img
# Otherwise check if any matplotlib figures were created by the query
figures = plt.get_fignums()
if figures:
try:
# Improve any existing figure if possible
fig = plt.figure(figures[0])
axes = fig.axes
if axes and len(axes) > 0: # Make sure axes list isn't empty
ax = axes[0]
# Add grid lines
ax.grid(axis='y', linestyle='--', alpha=0.7)
# Enhance title and labels if they exist
if ax.get_title():
ax.set_title(ax.get_title(), fontsize=16)
if ax.get_xlabel():
ax.set_xlabel(ax.get_xlabel(), fontsize=14)
if ax.get_ylabel():
ax.set_ylabel(ax.get_ylabel(), fontsize=14)
# Handle legend if it exists
if ax.get_legend():
ax.legend(fontsize=12)
fig.tight_layout()
# Save the figure to a bytes buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
buf.seek(0)
# Create an image from the buffer
img = Image.open(buf)
plt.close('all') # Close the figure to free memory
return response.message.content, img
except Exception as e:
plt.close('all')
# Log the error but continue without crashing
print(f"Visualization error: {str(e)}")
return response.message.content, None
else:
# No visualization was generated
return response.message.content, None
except Exception as e:
plt.close('all') # Make sure to close any figures in case of error
return f"Error processing query: {str(e)}", None
def handle_example_selection(example_name):
if example_name in EXAMPLE_DATASETS:
file_path = EXAMPLE_DATASETS[example_name]
df, message = load_dataframe(file_path)
return df, message, gr.update(value=f"Dataset preview:\n{df.head().to_string()}")
return None, "Please select a valid example dataset.", gr.update(value="")
def handle_file_upload(file):
if file is not None:
df, message = load_dataframe(file)
return df, message, gr.update(value=f"Dataset preview:\n{df.head().to_string()}")
return None, "No file uploaded.", gr.update(value="")
# Create Gradio interface
with gr.Blocks(title="Pandas Data Analysis with Groq LLM") as app:
gr.Markdown("# Pandas Data Analysis with Groq LLM")
gr.Markdown("Upload your CSV data or choose an example dataset, then ask questions about it.")
# State variables
df_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Data Selection")
with gr.Tab("Upload Data"):
file_input = gr.File(label="Upload CSV File", file_types=[".csv"])
upload_button = gr.Button("Load Uploaded Data")
with gr.Tab("Example Datasets"):
example_dropdown = gr.Dropdown(
choices=list(EXAMPLE_DATASETS.keys()),
label="Select Example Dataset"
)
example_button = gr.Button("Load Example Dataset")
data_status = gr.Textbox(label="Data Loading Status", interactive=False)
with gr.Group():
gr.Markdown("### Groq API Configuration")
api_key = gr.Textbox(
label="Enter your Groq API Key",
placeholder="gsk_...",
type="password"
)
model_choice = gr.Dropdown(
choices=["llama-3.3-70b-versatile", "mixtral-8x7b-32768", "gemma-7b-it"],
value="llama-3.3-70b-versatile",
label="Select Groq Model"
)
with gr.Column(scale=1):
data_preview = gr.Textbox(label="Dataset Preview", interactive=False, lines=10)
query_input = gr.Textbox(
label="Ask a question about your data",
placeholder="e.g., What is the trend of monthly bookings over time?",
lines=2
)
query_button = gr.Button("Submit Query")
# Output display with tabs for text and visualization
with gr.Tabs():
with gr.TabItem("Text Response"):
response_output = gr.Textbox(label="Response", interactive=False, lines=10)
with gr.TabItem("Visualization"):
image_output = gr.Image(label="Data Visualization", interactive=False)
# Handle events
upload_button.click(
handle_file_upload,
inputs=[file_input],
outputs=[df_state, data_status, data_preview]
)
example_button.click(
handle_example_selection,
inputs=[example_dropdown],
outputs=[df_state, data_status, data_preview]
)
query_button.click(
process_query,
inputs=[query_input, api_key, df_state, model_choice],
outputs=[response_output, image_output]
)
gr.Markdown("""
### Instructions
1. Upload your CSV file or select an example dataset
2. Enter your Groq API key (get one at [https://console.groq.com](https://console.groq.com))
3. Ask questions about your data in natural language
4. Get AI-powered insights and visualizations based on your data
### Example Questions
- What is the trend of monthly bookings over time?
- What's the distribution of stay duration?
- Which country has the most bookings?
- Is there a correlation between lead time and cancellations?
- Show me bookings by month and year
""")
# Launch the app
if __name__ == "__main__":
app.launch() |