Spaces:
Running
Running
Update src/facerender/animate.py
Browse files- src/facerender/animate.py +280 -257
src/facerender/animate.py
CHANGED
@@ -1,257 +1,280 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import yaml
|
4 |
-
import numpy as np
|
5 |
-
import warnings
|
6 |
-
from skimage import img_as_ubyte
|
7 |
-
import safetensors
|
8 |
-
import safetensors.torch
|
9 |
-
warnings.filterwarnings('ignore')
|
10 |
-
|
11 |
-
|
12 |
-
import imageio
|
13 |
-
import torch
|
14 |
-
import torchvision
|
15 |
-
|
16 |
-
|
17 |
-
from src.facerender.modules.keypoint_detector import HEEstimator, KPDetector
|
18 |
-
from src.facerender.modules.mapping import MappingNet
|
19 |
-
from src.facerender.modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator
|
20 |
-
from src.facerender.modules.make_animation import make_animation
|
21 |
-
|
22 |
-
from pydub import AudioSegment
|
23 |
-
from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list
|
24 |
-
from src.utils.paste_pic import paste_pic
|
25 |
-
from src.utils.videoio import save_video_with_watermark
|
26 |
-
|
27 |
-
try:
|
28 |
-
import webui # in webui
|
29 |
-
in_webui = True
|
30 |
-
except:
|
31 |
-
in_webui = False
|
32 |
-
|
33 |
-
class AnimateFromCoeff():
|
34 |
-
|
35 |
-
def __init__(self, sadtalker_path, device):
|
36 |
-
|
37 |
-
with open(sadtalker_path['facerender_yaml']) as f:
|
38 |
-
config = yaml.safe_load(f)
|
39 |
-
|
40 |
-
generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'],
|
41 |
-
**config['model_params']['common_params'])
|
42 |
-
kp_extractor = KPDetector(**config['model_params']['kp_detector_params'],
|
43 |
-
**config['model_params']['common_params'])
|
44 |
-
he_estimator = HEEstimator(**config['model_params']['he_estimator_params'],
|
45 |
-
**config['model_params']['common_params'])
|
46 |
-
mapping = MappingNet(**config['model_params']['mapping_params'])
|
47 |
-
|
48 |
-
generator.to(device)
|
49 |
-
kp_extractor.to(device)
|
50 |
-
he_estimator.to(device)
|
51 |
-
mapping.to(device)
|
52 |
-
for param in generator.parameters():
|
53 |
-
param.requires_grad = False
|
54 |
-
for param in kp_extractor.parameters():
|
55 |
-
param.requires_grad = False
|
56 |
-
for param in he_estimator.parameters():
|
57 |
-
param.requires_grad = False
|
58 |
-
for param in mapping.parameters():
|
59 |
-
param.requires_grad = False
|
60 |
-
|
61 |
-
if sadtalker_path is not None:
|
62 |
-
if 'checkpoint' in sadtalker_path: # use safe tensor
|
63 |
-
self.load_cpk_facevid2vid_safetensor(sadtalker_path['checkpoint'], kp_detector=kp_extractor, generator=generator, he_estimator=None)
|
64 |
-
else:
|
65 |
-
self.load_cpk_facevid2vid(sadtalker_path['free_view_checkpoint'], kp_detector=kp_extractor, generator=generator, he_estimator=he_estimator)
|
66 |
-
else:
|
67 |
-
raise AttributeError("Checkpoint should be specified for video head pose estimator.")
|
68 |
-
|
69 |
-
if sadtalker_path['mappingnet_checkpoint'] is not None:
|
70 |
-
self.load_cpk_mapping(sadtalker_path['mappingnet_checkpoint'], mapping=mapping)
|
71 |
-
else:
|
72 |
-
raise AttributeError("Checkpoint should be specified for video head pose estimator.")
|
73 |
-
|
74 |
-
self.kp_extractor = kp_extractor
|
75 |
-
self.generator = generator
|
76 |
-
self.he_estimator = he_estimator
|
77 |
-
self.mapping = mapping
|
78 |
-
|
79 |
-
self.kp_extractor.eval()
|
80 |
-
self.generator.eval()
|
81 |
-
self.he_estimator.eval()
|
82 |
-
self.mapping.eval()
|
83 |
-
|
84 |
-
self.device = device
|
85 |
-
|
86 |
-
def load_cpk_facevid2vid_safetensor(self, checkpoint_path, generator=None,
|
87 |
-
kp_detector=None, he_estimator=None,
|
88 |
-
device="cpu"):
|
89 |
-
|
90 |
-
checkpoint = safetensors.torch.load_file(checkpoint_path)
|
91 |
-
|
92 |
-
if generator is not None:
|
93 |
-
x_generator = {}
|
94 |
-
for k,v in checkpoint.items():
|
95 |
-
if 'generator' in k:
|
96 |
-
x_generator[k.replace('generator.', '')] = v
|
97 |
-
generator.load_state_dict(x_generator)
|
98 |
-
if kp_detector is not None:
|
99 |
-
x_generator = {}
|
100 |
-
for k,v in checkpoint.items():
|
101 |
-
if 'kp_extractor' in k:
|
102 |
-
x_generator[k.replace('kp_extractor.', '')] = v
|
103 |
-
kp_detector.load_state_dict(x_generator)
|
104 |
-
if he_estimator is not None:
|
105 |
-
x_generator = {}
|
106 |
-
for k,v in checkpoint.items():
|
107 |
-
if 'he_estimator' in k:
|
108 |
-
x_generator[k.replace('he_estimator.', '')] = v
|
109 |
-
he_estimator.load_state_dict(x_generator)
|
110 |
-
|
111 |
-
return None
|
112 |
-
|
113 |
-
def load_cpk_facevid2vid(self, checkpoint_path, generator=None, discriminator=None,
|
114 |
-
kp_detector=None, he_estimator=None, optimizer_generator=None,
|
115 |
-
optimizer_discriminator=None, optimizer_kp_detector=None,
|
116 |
-
optimizer_he_estimator=None, device="cpu"):
|
117 |
-
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
|
118 |
-
if generator is not None:
|
119 |
-
generator.load_state_dict(checkpoint['generator'])
|
120 |
-
if kp_detector is not None:
|
121 |
-
kp_detector.load_state_dict(checkpoint['kp_detector'])
|
122 |
-
if he_estimator is not None:
|
123 |
-
he_estimator.load_state_dict(checkpoint['he_estimator'])
|
124 |
-
if discriminator is not None:
|
125 |
-
try:
|
126 |
-
discriminator.load_state_dict(checkpoint['discriminator'])
|
127 |
-
except:
|
128 |
-
print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
|
129 |
-
if optimizer_generator is not None:
|
130 |
-
optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
|
131 |
-
if optimizer_discriminator is not None:
|
132 |
-
try:
|
133 |
-
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
|
134 |
-
except RuntimeError as e:
|
135 |
-
print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
|
136 |
-
if optimizer_kp_detector is not None:
|
137 |
-
optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
|
138 |
-
if optimizer_he_estimator is not None:
|
139 |
-
optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator'])
|
140 |
-
|
141 |
-
return checkpoint['epoch']
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
os.
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import yaml
|
4 |
+
import numpy as np
|
5 |
+
import warnings
|
6 |
+
from skimage import img_as_ubyte
|
7 |
+
import safetensors
|
8 |
+
import safetensors.torch
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
+
|
11 |
+
|
12 |
+
import imageio
|
13 |
+
import torch
|
14 |
+
import torchvision
|
15 |
+
|
16 |
+
|
17 |
+
from src.facerender.modules.keypoint_detector import HEEstimator, KPDetector
|
18 |
+
from src.facerender.modules.mapping import MappingNet
|
19 |
+
from src.facerender.modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator
|
20 |
+
from src.facerender.modules.make_animation import make_animation
|
21 |
+
|
22 |
+
from pydub import AudioSegment
|
23 |
+
from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list
|
24 |
+
from src.utils.paste_pic import paste_pic
|
25 |
+
from src.utils.videoio import save_video_with_watermark
|
26 |
+
|
27 |
+
try:
|
28 |
+
import webui # in webui
|
29 |
+
in_webui = True
|
30 |
+
except:
|
31 |
+
in_webui = False
|
32 |
+
|
33 |
+
class AnimateFromCoeff():
|
34 |
+
|
35 |
+
def __init__(self, sadtalker_path, device):
|
36 |
+
|
37 |
+
with open(sadtalker_path['facerender_yaml']) as f:
|
38 |
+
config = yaml.safe_load(f)
|
39 |
+
|
40 |
+
generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'],
|
41 |
+
**config['model_params']['common_params'])
|
42 |
+
kp_extractor = KPDetector(**config['model_params']['kp_detector_params'],
|
43 |
+
**config['model_params']['common_params'])
|
44 |
+
he_estimator = HEEstimator(**config['model_params']['he_estimator_params'],
|
45 |
+
**config['model_params']['common_params'])
|
46 |
+
mapping = MappingNet(**config['model_params']['mapping_params'])
|
47 |
+
|
48 |
+
generator.to(device)
|
49 |
+
kp_extractor.to(device)
|
50 |
+
he_estimator.to(device)
|
51 |
+
mapping.to(device)
|
52 |
+
for param in generator.parameters():
|
53 |
+
param.requires_grad = False
|
54 |
+
for param in kp_extractor.parameters():
|
55 |
+
param.requires_grad = False
|
56 |
+
for param in he_estimator.parameters():
|
57 |
+
param.requires_grad = False
|
58 |
+
for param in mapping.parameters():
|
59 |
+
param.requires_grad = False
|
60 |
+
|
61 |
+
if sadtalker_path is not None:
|
62 |
+
if 'checkpoint' in sadtalker_path: # use safe tensor
|
63 |
+
self.load_cpk_facevid2vid_safetensor(sadtalker_path['checkpoint'], kp_detector=kp_extractor, generator=generator, he_estimator=None)
|
64 |
+
else:
|
65 |
+
self.load_cpk_facevid2vid(sadtalker_path['free_view_checkpoint'], kp_detector=kp_extractor, generator=generator, he_estimator=he_estimator)
|
66 |
+
else:
|
67 |
+
raise AttributeError("Checkpoint should be specified for video head pose estimator.")
|
68 |
+
|
69 |
+
if sadtalker_path['mappingnet_checkpoint'] is not None:
|
70 |
+
self.load_cpk_mapping(sadtalker_path['mappingnet_checkpoint'], mapping=mapping)
|
71 |
+
else:
|
72 |
+
raise AttributeError("Checkpoint should be specified for video head pose estimator.")
|
73 |
+
|
74 |
+
self.kp_extractor = kp_extractor
|
75 |
+
self.generator = generator
|
76 |
+
self.he_estimator = he_estimator
|
77 |
+
self.mapping = mapping
|
78 |
+
|
79 |
+
self.kp_extractor.eval()
|
80 |
+
self.generator.eval()
|
81 |
+
self.he_estimator.eval()
|
82 |
+
self.mapping.eval()
|
83 |
+
|
84 |
+
self.device = device
|
85 |
+
|
86 |
+
def load_cpk_facevid2vid_safetensor(self, checkpoint_path, generator=None,
|
87 |
+
kp_detector=None, he_estimator=None,
|
88 |
+
device="cpu"):
|
89 |
+
|
90 |
+
checkpoint = safetensors.torch.load_file(checkpoint_path)
|
91 |
+
|
92 |
+
if generator is not None:
|
93 |
+
x_generator = {}
|
94 |
+
for k,v in checkpoint.items():
|
95 |
+
if 'generator' in k:
|
96 |
+
x_generator[k.replace('generator.', '')] = v
|
97 |
+
generator.load_state_dict(x_generator)
|
98 |
+
if kp_detector is not None:
|
99 |
+
x_generator = {}
|
100 |
+
for k,v in checkpoint.items():
|
101 |
+
if 'kp_extractor' in k:
|
102 |
+
x_generator[k.replace('kp_extractor.', '')] = v
|
103 |
+
kp_detector.load_state_dict(x_generator)
|
104 |
+
if he_estimator is not None:
|
105 |
+
x_generator = {}
|
106 |
+
for k,v in checkpoint.items():
|
107 |
+
if 'he_estimator' in k:
|
108 |
+
x_generator[k.replace('he_estimator.', '')] = v
|
109 |
+
he_estimator.load_state_dict(x_generator)
|
110 |
+
|
111 |
+
return None
|
112 |
+
|
113 |
+
def load_cpk_facevid2vid(self, checkpoint_path, generator=None, discriminator=None,
|
114 |
+
kp_detector=None, he_estimator=None, optimizer_generator=None,
|
115 |
+
optimizer_discriminator=None, optimizer_kp_detector=None,
|
116 |
+
optimizer_he_estimator=None, device="cpu"):
|
117 |
+
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
|
118 |
+
if generator is not None:
|
119 |
+
generator.load_state_dict(checkpoint['generator'])
|
120 |
+
if kp_detector is not None:
|
121 |
+
kp_detector.load_state_dict(checkpoint['kp_detector'])
|
122 |
+
if he_estimator is not None:
|
123 |
+
he_estimator.load_state_dict(checkpoint['he_estimator'])
|
124 |
+
if discriminator is not None:
|
125 |
+
try:
|
126 |
+
discriminator.load_state_dict(checkpoint['discriminator'])
|
127 |
+
except:
|
128 |
+
print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
|
129 |
+
if optimizer_generator is not None:
|
130 |
+
optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
|
131 |
+
if optimizer_discriminator is not None:
|
132 |
+
try:
|
133 |
+
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
|
134 |
+
except RuntimeError as e:
|
135 |
+
print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
|
136 |
+
if optimizer_kp_detector is not None:
|
137 |
+
optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
|
138 |
+
if optimizer_he_estimator is not None:
|
139 |
+
optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator'])
|
140 |
+
|
141 |
+
return checkpoint['epoch']
|
142 |
+
|
143 |
+
import tarfile
|
144 |
+
|
145 |
+
def load_cpk_mapping(self, checkpoint_path, mapping=None, discriminator=None,
|
146 |
+
optimizer_mapping=None, optimizer_discriminator=None, device='cpu'):
|
147 |
+
|
148 |
+
# Eğer .tar dosyasıysa içeriğini kontrol et
|
149 |
+
if checkpoint_path.endswith(".tar"):
|
150 |
+
try:
|
151 |
+
with tarfile.open(checkpoint_path, "r") as tar:
|
152 |
+
members = tar.getnames()
|
153 |
+
if not any(name.startswith("storages") for name in members):
|
154 |
+
print("⚠️ 'storages' klasörü .tar dosyasında bulunamadı. Devam ediliyor...")
|
155 |
+
else:
|
156 |
+
print("✔️ 'storages' bulundu.")
|
157 |
+
except Exception as e:
|
158 |
+
print(f"Tar kontrol hatası: {e}")
|
159 |
+
|
160 |
+
# Checkpoint yükle
|
161 |
+
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
|
162 |
+
|
163 |
+
# Mapping yükleme
|
164 |
+
if mapping is not None and 'mapping' in checkpoint:
|
165 |
+
mapping.load_state_dict(checkpoint['mapping'])
|
166 |
+
|
167 |
+
# Diğer parametreler varsa
|
168 |
+
if discriminator is not None and 'discriminator' in checkpoint:
|
169 |
+
discriminator.load_state_dict(checkpoint['discriminator'])
|
170 |
+
|
171 |
+
if optimizer_mapping is not None and 'optimizer_mapping' in checkpoint:
|
172 |
+
optimizer_mapping.load_state_dict(checkpoint['optimizer_mapping'])
|
173 |
+
|
174 |
+
if optimizer_discriminator is not None and 'optimizer_discriminator' in checkpoint:
|
175 |
+
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
|
176 |
+
|
177 |
+
return checkpoint.get('epoch', 0)
|
178 |
+
|
179 |
+
|
180 |
+
def generate(self, x, video_save_dir, pic_path, crop_info, enhancer=None, background_enhancer=None, preprocess='crop', img_size=256):
|
181 |
+
|
182 |
+
source_image=x['source_image'].type(torch.FloatTensor)
|
183 |
+
source_semantics=x['source_semantics'].type(torch.FloatTensor)
|
184 |
+
target_semantics=x['target_semantics_list'].type(torch.FloatTensor)
|
185 |
+
source_image=source_image.to(self.device)
|
186 |
+
source_semantics=source_semantics.to(self.device)
|
187 |
+
target_semantics=target_semantics.to(self.device)
|
188 |
+
if 'yaw_c_seq' in x:
|
189 |
+
yaw_c_seq = x['yaw_c_seq'].type(torch.FloatTensor)
|
190 |
+
yaw_c_seq = x['yaw_c_seq'].to(self.device)
|
191 |
+
else:
|
192 |
+
yaw_c_seq = None
|
193 |
+
if 'pitch_c_seq' in x:
|
194 |
+
pitch_c_seq = x['pitch_c_seq'].type(torch.FloatTensor)
|
195 |
+
pitch_c_seq = x['pitch_c_seq'].to(self.device)
|
196 |
+
else:
|
197 |
+
pitch_c_seq = None
|
198 |
+
if 'roll_c_seq' in x:
|
199 |
+
roll_c_seq = x['roll_c_seq'].type(torch.FloatTensor)
|
200 |
+
roll_c_seq = x['roll_c_seq'].to(self.device)
|
201 |
+
else:
|
202 |
+
roll_c_seq = None
|
203 |
+
|
204 |
+
frame_num = x['frame_num']
|
205 |
+
|
206 |
+
predictions_video = make_animation(source_image, source_semantics, target_semantics,
|
207 |
+
self.generator, self.kp_extractor, self.he_estimator, self.mapping,
|
208 |
+
yaw_c_seq, pitch_c_seq, roll_c_seq, use_exp = True)
|
209 |
+
|
210 |
+
predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:])
|
211 |
+
predictions_video = predictions_video[:frame_num]
|
212 |
+
|
213 |
+
video = []
|
214 |
+
for idx in range(predictions_video.shape[0]):
|
215 |
+
image = predictions_video[idx]
|
216 |
+
image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32)
|
217 |
+
video.append(image)
|
218 |
+
result = img_as_ubyte(video)
|
219 |
+
|
220 |
+
### the generated video is 256x256, so we keep the aspect ratio,
|
221 |
+
original_size = crop_info[0]
|
222 |
+
if original_size:
|
223 |
+
result = [ cv2.resize(result_i,(img_size, int(img_size * original_size[1]/original_size[0]) )) for result_i in result ]
|
224 |
+
|
225 |
+
video_name = x['video_name'] + '.mp4'
|
226 |
+
path = os.path.join(video_save_dir, 'temp_'+video_name)
|
227 |
+
|
228 |
+
imageio.mimsave(path, result, fps=float(25))
|
229 |
+
|
230 |
+
av_path = os.path.join(video_save_dir, video_name)
|
231 |
+
return_path = av_path
|
232 |
+
|
233 |
+
audio_path = x['audio_path']
|
234 |
+
audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0]
|
235 |
+
new_audio_path = os.path.join(video_save_dir, audio_name+'.wav')
|
236 |
+
start_time = 0
|
237 |
+
# cog will not keep the .mp3 filename
|
238 |
+
sound = AudioSegment.from_file(audio_path)
|
239 |
+
frames = frame_num
|
240 |
+
end_time = start_time + frames*1/25*1000
|
241 |
+
word1=sound.set_frame_rate(16000)
|
242 |
+
word = word1[start_time:end_time]
|
243 |
+
word.export(new_audio_path, format="wav")
|
244 |
+
|
245 |
+
save_video_with_watermark(path, new_audio_path, av_path, watermark= False)
|
246 |
+
print(f'The generated video is named {video_save_dir}/{video_name}')
|
247 |
+
|
248 |
+
if 'full' in preprocess.lower():
|
249 |
+
# only add watermark to the full image.
|
250 |
+
video_name_full = x['video_name'] + '_full.mp4'
|
251 |
+
full_video_path = os.path.join(video_save_dir, video_name_full)
|
252 |
+
return_path = full_video_path
|
253 |
+
paste_pic(path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop= True if 'ext' in preprocess.lower() else False)
|
254 |
+
print(f'The generated video is named {video_save_dir}/{video_name_full}')
|
255 |
+
else:
|
256 |
+
full_video_path = av_path
|
257 |
+
|
258 |
+
#### paste back then enhancers
|
259 |
+
if enhancer:
|
260 |
+
video_name_enhancer = x['video_name'] + '_enhanced.mp4'
|
261 |
+
enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer)
|
262 |
+
av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer)
|
263 |
+
return_path = av_path_enhancer
|
264 |
+
|
265 |
+
try:
|
266 |
+
enhanced_images_gen_with_len = enhancer_generator_with_len(full_video_path, method=enhancer, bg_upsampler=background_enhancer)
|
267 |
+
imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25))
|
268 |
+
except:
|
269 |
+
enhanced_images_gen_with_len = enhancer_list(full_video_path, method=enhancer, bg_upsampler=background_enhancer)
|
270 |
+
imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25))
|
271 |
+
|
272 |
+
save_video_with_watermark(enhanced_path, new_audio_path, av_path_enhancer, watermark= False)
|
273 |
+
print(f'The generated video is named {video_save_dir}/{video_name_enhancer}')
|
274 |
+
os.remove(enhanced_path)
|
275 |
+
|
276 |
+
os.remove(path)
|
277 |
+
os.remove(new_audio_path)
|
278 |
+
|
279 |
+
return return_path
|
280 |
+
|