Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +299 -364
src/streamlit_app.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
Optimized for Hugging Face Spaces deployment
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
| 7 |
import io
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
-
from collections import Counter
|
| 10 |
-
from typing import Dict, Optional, List, Tuple
|
| 11 |
import streamlit as st
|
| 12 |
from transformers import pipeline, logging as hf_logging
|
| 13 |
from PIL import Image
|
|
@@ -18,416 +16,353 @@ import urllib.parse
|
|
| 18 |
import math
|
| 19 |
import warnings
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
# -------------------------
|
| 24 |
-
# 1. Suppress Python Warnings (Deprecation, UserWarning)
|
| 25 |
-
warnings.filterwarnings("ignore", category=UserWarning, module="transformers")
|
| 26 |
-
warnings.filterwarnings("ignore", category=FutureWarning, module="transformers")
|
| 27 |
-
|
| 28 |
-
# 2. Suppress Hugging Face Informational Logs (Weights initialization, CPU usage)
|
| 29 |
hf_logging.set_verbosity_error()
|
| 30 |
-
|
| 31 |
-
# 3. Suppress TensorFlow/PyTorch logs if backend triggers them
|
| 32 |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
| 33 |
-
|
| 34 |
-
# Set matplotlib backend for server environments
|
| 35 |
matplotlib.use('Agg')
|
| 36 |
|
| 37 |
-
# -------------------------
|
| 38 |
-
# Configuration
|
| 39 |
-
# -------------------------
|
| 40 |
st.set_page_config(
|
| 41 |
-
page_title="Review Validator
|
| 42 |
-
page_icon="
|
| 43 |
layout="wide",
|
| 44 |
initial_sidebar_state="collapsed"
|
| 45 |
)
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
EMOTION_MODEL_NAME = "j-hartmann/emotion-english-distilroberta-base"
|
| 51 |
-
# Primary Image Model (High Precision)
|
| 52 |
-
IMAGE_MODEL_PRIMARY = "mikedata/real_vs_fake_image_model_vit_base"
|
| 53 |
-
# Backup Image Model (High Reliability)
|
| 54 |
-
IMAGE_MODEL_BACKUP = "umm-maybe/AI-image-detector"
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
# -------------------------
|
| 61 |
-
def get_secret(key: str, default: str = None) -> Optional[str]:
|
| 62 |
-
"""
|
| 63 |
-
Robust secret retrieval.
|
| 64 |
-
Prioritizes Environment Variables (HF Spaces) to avoid Streamlit secrets file errors.
|
| 65 |
-
"""
|
| 66 |
-
# 1. Priority: Environment Variables (Hugging Face Secrets)
|
| 67 |
-
if key in os.environ:
|
| 68 |
-
return os.environ[key]
|
| 69 |
-
|
| 70 |
-
# 2. Fallback: Streamlit Secrets (Local .toml file)
|
| 71 |
-
try:
|
| 72 |
-
if hasattr(st, 'secrets') and key in st.secrets:
|
| 73 |
-
return st.secrets[key]
|
| 74 |
-
except Exception:
|
| 75 |
-
# Ignore errors if secrets.toml doesn't exist
|
| 76 |
-
pass
|
| 77 |
-
|
| 78 |
-
return default
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
|
| 83 |
-
#
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
def inject_custom_css():
|
| 87 |
st.markdown("""
|
| 88 |
<style>
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
</style>
|
| 98 |
""", unsafe_allow_html=True)
|
| 99 |
|
| 100 |
-
#
|
| 101 |
-
# Model Loading (Ensemble)
|
| 102 |
-
# -------------------------
|
| 103 |
@st.cache_resource(show_spinner=False)
|
| 104 |
-
def
|
| 105 |
-
|
| 106 |
-
Load all models for the ensemble with individual error handling.
|
| 107 |
-
Returns: (models_dictionary, list_of_error_messages)
|
| 108 |
-
"""
|
| 109 |
-
models = {}
|
| 110 |
-
errors = []
|
| 111 |
-
|
| 112 |
-
# 1. Fake Detector (Critical)
|
| 113 |
-
try:
|
| 114 |
-
models['fake'] = pipeline("text-classification", model=FAKE_MODEL_NAME, token=HF_TOKEN)
|
| 115 |
-
except Exception as e:
|
| 116 |
-
errors.append(f"Fake Detector: {str(e)}")
|
| 117 |
-
|
| 118 |
-
# 2. Sentiment
|
| 119 |
try:
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
# 3. Emotion
|
| 125 |
-
try:
|
| 126 |
-
# top_k=None replaces deprecated return_all_scores=True
|
| 127 |
-
models['emotion'] = pipeline("text-classification", model=EMOTION_MODEL_NAME, top_k=None, token=HF_TOKEN)
|
| 128 |
-
except Exception as e:
|
| 129 |
-
errors.append(f"Emotion Model: {str(e)}")
|
| 130 |
-
|
| 131 |
-
# 4. Image (With Failover Strategy)
|
| 132 |
-
models['image_engine'] = "Offline"
|
| 133 |
-
try:
|
| 134 |
-
# Try primary precision model first
|
| 135 |
-
models['img_a'] = pipeline("image-classification", model=IMAGE_MODEL_PRIMARY, token=HF_TOKEN)
|
| 136 |
-
# Try backup model
|
| 137 |
-
models['img_b'] = pipeline("image-classification", model=IMAGE_MODEL_BACKUP, token=HF_TOKEN)
|
| 138 |
-
models['image_engine'] = "Dual-Core"
|
| 139 |
-
except Exception as e:
|
| 140 |
-
print(f"Dual engine load failed: {e}")
|
| 141 |
try:
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
inject_custom_css()
|
| 154 |
-
with st.spinner("๐ณ Prepping the Kitchen..."):
|
| 155 |
-
ensemble, load_errors = load_models()
|
| 156 |
-
|
| 157 |
-
# Handle Critical Errors
|
| 158 |
-
if 'fake' not in ensemble:
|
| 159 |
-
st.error("โ Critical Error: Failed to load the core Fake Detection model.")
|
| 160 |
-
if load_errors:
|
| 161 |
-
st.error(f"Details: {load_errors}")
|
| 162 |
-
st.stop()
|
| 163 |
-
|
| 164 |
-
if load_errors:
|
| 165 |
-
with st.expander("โ ๏ธ System Warnings", expanded=False):
|
| 166 |
-
for err in load_errors:
|
| 167 |
-
st.warning(err)
|
| 168 |
-
|
| 169 |
-
# -------------------------
|
| 170 |
-
# Advanced Feature Extraction
|
| 171 |
-
# -------------------------
|
| 172 |
-
def calculate_complexity_score(text: str) -> float:
|
| 173 |
-
"""Calculate linguistic complexity (0-100)"""
|
| 174 |
-
words = text.split()
|
| 175 |
-
if not words: return 0
|
| 176 |
-
avg_len = sum(len(w) for w in words) / len(words)
|
| 177 |
-
ttr = len(set(words)) / len(words)
|
| 178 |
-
score = (avg_len * 5) + (ttr * 50)
|
| 179 |
-
return min(100, max(0, score))
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
|
| 187 |
-
#
|
| 188 |
-
|
| 189 |
-
is_fake_prob = fake_res['score'] if fake_res['label'] == 'Fake' else (1 - fake_res['score'])
|
| 190 |
-
|
| 191 |
-
# 2. Sentiment
|
| 192 |
-
if 'sentiment' in models:
|
| 193 |
-
try:
|
| 194 |
-
sent_res = models['sentiment'](text[:512])[0]
|
| 195 |
-
sent_score = sent_res['score']
|
| 196 |
-
sent_label = sent_res['label']
|
| 197 |
-
except Exception: pass
|
| 198 |
-
|
| 199 |
-
# 3. Emotion
|
| 200 |
-
if 'emotion' in models:
|
| 201 |
-
try:
|
| 202 |
-
emo_res = models['emotion'](text[:512])[0]
|
| 203 |
-
top_emo = max(emo_res, key=lambda x: x['score'])
|
| 204 |
-
except Exception: pass
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
| 207 |
|
| 208 |
return {
|
| 209 |
-
"
|
| 210 |
-
"
|
| 211 |
-
"
|
| 212 |
-
"primary_emotion": top_emo['label'],
|
| 213 |
-
"emotion_confidence": top_emo['score'] * 100,
|
| 214 |
-
"complexity_score": complexity
|
| 215 |
}
|
| 216 |
|
| 217 |
-
#
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
if not OPENAI_API_KEY:
|
| 223 |
-
return generate_fallback_report(features)
|
| 224 |
-
|
| 225 |
-
prompt = (
|
| 226 |
-
f"Analyze this product/food review. Fake Score: {features['fake_probability']:.1f}%. "
|
| 227 |
-
f"Vibe: {features['primary_emotion']}. Text: {text[:600]}... "
|
| 228 |
-
"Explain if it sounds like a real customer or a bot. Be simple and helpful."
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
try:
|
| 232 |
-
headers = {"Authorization": f"Bearer {OPENAI_API_KEY}", "Content-Type": "application/json"}
|
| 233 |
-
payload = {
|
| 234 |
-
"model": "gpt-4o-mini",
|
| 235 |
-
"messages": [{"role": "user", "content": prompt}],
|
| 236 |
-
"temperature": 0.5
|
| 237 |
-
}
|
| 238 |
-
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload, timeout=10)
|
| 239 |
-
return response.json()["choices"][0]["message"]["content"]
|
| 240 |
-
except:
|
| 241 |
-
return generate_fallback_report(features)
|
| 242 |
-
|
| 243 |
-
def generate_fallback_report(features: Dict) -> str:
|
| 244 |
-
"""Simple rule-based report"""
|
| 245 |
-
f_prob = features['fake_probability']
|
| 246 |
|
| 247 |
-
if
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
return "โ
**Looks Good!** This review reads like a genuine customer experience."
|
| 251 |
-
|
| 252 |
-
# -------------------------
|
| 253 |
-
# Visualization: Radar Chart
|
| 254 |
-
# -------------------------
|
| 255 |
-
def create_radar_chart(features: Dict) -> plt.Figure:
|
| 256 |
-
"""Creates a multi-aspect radar chart"""
|
| 257 |
-
categories = ['Suspiciousness', 'Feelings', 'Drama', 'Simplicity']
|
| 258 |
-
inv_comp = 100 - features['complexity_score']
|
| 259 |
-
|
| 260 |
-
values = [
|
| 261 |
-
features['fake_probability'],
|
| 262 |
-
features['sentiment_confidence'],
|
| 263 |
-
features['emotion_confidence'],
|
| 264 |
-
inv_comp
|
| 265 |
-
]
|
| 266 |
-
|
| 267 |
-
# Close the loop
|
| 268 |
-
values += values[:1]
|
| 269 |
-
angles = [n / 4 * 2 * math.pi for n in range(4)] + [0]
|
| 270 |
-
|
| 271 |
-
fig, ax = plt.subplots(figsize=(4, 4), subplot_kw=dict(polar=True))
|
| 272 |
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
ax.set_xticks(angles[:-1])
|
| 281 |
-
ax.set_xticklabels(categories, size=9)
|
| 282 |
-
ax.set_yticks([])
|
| 283 |
-
ax.spines['polar'].set_visible(False)
|
| 284 |
|
| 285 |
-
return
|
| 286 |
|
| 287 |
-
|
| 288 |
-
# Image Functions
|
| 289 |
-
# -------------------------
|
| 290 |
-
def get_image_from_url(url: str) -> Optional[Image.Image]:
|
| 291 |
try:
|
| 292 |
headers = {'User-Agent': 'Mozilla/5.0'}
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
# Engine A
|
| 304 |
-
if 'img_a' in models:
|
| 305 |
-
res_a = models['img_a'](img)
|
| 306 |
-
for r in res_a:
|
| 307 |
-
if r['label'].lower() in ['fake', 'artificial', 'ai', 'generated']:
|
| 308 |
-
score_a_ai = r['score']
|
| 309 |
-
|
| 310 |
-
# Engine B
|
| 311 |
-
if 'img_b' in models:
|
| 312 |
-
res_b = models['img_b'](img)
|
| 313 |
-
for r in res_b:
|
| 314 |
-
if r['label'].lower() in ['fake', 'artificial', 'ai', 'generated']:
|
| 315 |
-
score_b_ai = r['score']
|
| 316 |
-
else:
|
| 317 |
-
score_b_ai = score_a_ai
|
| 318 |
-
|
| 319 |
-
avg_ai_score = (score_a_ai + score_b_ai) / 2
|
| 320 |
-
agreement = 1.0 - abs(score_a_ai - score_b_ai)
|
| 321 |
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
|
|
|
| 329 |
|
| 330 |
-
#
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
def main():
|
| 334 |
st.markdown("""
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
# --- TAB 1: TEXT ---
|
| 344 |
with tab1:
|
| 345 |
-
col1, col2 = st.columns([
|
| 346 |
with col1:
|
| 347 |
-
txt = st.text_area("Paste Review:", height=
|
| 348 |
with col2:
|
| 349 |
-
st.info("๐ก
|
| 350 |
-
if st.button("
|
| 351 |
-
if
|
| 352 |
-
|
| 353 |
-
st.
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
-
# ---
|
| 376 |
with tab2:
|
| 377 |
-
st.
|
| 378 |
-
st.caption("Step 1: Check for AI Generation. Step 2: Check if it's stolen from the web.")
|
| 379 |
-
|
| 380 |
-
url = st.text_input("Paste Image URL (Right click image -> Copy Image Address):")
|
| 381 |
|
| 382 |
-
|
| 383 |
-
|
|
|
|
| 384 |
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
st.
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
if img:
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
st.
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
res = analyze_image_dual_engine(img, ensemble)
|
| 399 |
-
ai_p = res['avg_ai'] * 100
|
| 400 |
-
real_p = res['avg_real'] * 100
|
| 401 |
-
|
| 402 |
-
st.subheader("Step 1: AI Detection")
|
| 403 |
-
|
| 404 |
-
# Verdict Logic
|
| 405 |
-
if res['agreement'] < 0.6:
|
| 406 |
-
st.warning("๐ค **Uncertain Result**")
|
| 407 |
-
st.markdown("The models disagree. This might be a heavily filtered real photo.")
|
| 408 |
-
elif ai_p > 60:
|
| 409 |
-
st.error(f"๐ค **Likely AI Generated** ({ai_p:.0f}%)")
|
| 410 |
-
st.markdown("Visual patterns suggest this is computer-generated.")
|
| 411 |
-
elif real_p > 60:
|
| 412 |
-
st.success(f"โ
**Likely Real Camera** ({real_p:.0f}%)")
|
| 413 |
-
st.markdown("Visual noise patterns match a real camera sensor.")
|
| 414 |
-
else:
|
| 415 |
-
st.warning("๐คท **Inconclusive**")
|
| 416 |
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
| 429 |
else:
|
| 430 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
|
| 432 |
if __name__ == "__main__":
|
| 433 |
main()
|
|
|
|
| 1 |
"""
|
| 2 |
+
Review Validator - Final Professional Edition
|
|
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
import os
|
| 6 |
import io
|
| 7 |
+
import time
|
| 8 |
import numpy as np
|
|
|
|
|
|
|
| 9 |
import streamlit as st
|
| 10 |
from transformers import pipeline, logging as hf_logging
|
| 11 |
from PIL import Image
|
|
|
|
| 16 |
import math
|
| 17 |
import warnings
|
| 18 |
|
| 19 |
+
# --- Setup: Silence the technical noise ---
|
| 20 |
+
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
hf_logging.set_verbosity_error()
|
|
|
|
|
|
|
| 22 |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
|
|
|
|
|
| 23 |
matplotlib.use('Agg')
|
| 24 |
|
|
|
|
|
|
|
|
|
|
| 25 |
st.set_page_config(
|
| 26 |
+
page_title="Review Validator",
|
| 27 |
+
page_icon="๐ก๏ธ",
|
| 28 |
layout="wide",
|
| 29 |
initial_sidebar_state="collapsed"
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# ==========================================
|
| 33 |
+
# ๐ง THE AI BRAINS (High Precision Models)
|
| 34 |
+
# ==========================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# 1. Bot Detector: The gold standard for catching GPT-written text
|
| 37 |
+
MODEL_FAKE = "fakespot-ai/roberta-base-ai-text-detection-v1"
|
| 38 |
|
| 39 |
+
# 2. Mood Scanner: Checks detailed sentiment
|
| 40 |
+
MODEL_MOOD = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
# 3. Grammar Checker: Catches unnatural "perfect" bot grammar
|
| 43 |
+
MODEL_GRAMMAR = "textattack/roberta-base-CoLA"
|
| 44 |
|
| 45 |
+
# 4. Image Checker A: High Precision (Strict)
|
| 46 |
+
MODEL_IMG_A = "dima806/ai_vs_real_image_detection"
|
| 47 |
+
|
| 48 |
+
# 5. Image Checker B: High Reliability (Broad)
|
| 49 |
+
MODEL_IMG_B = "umm-maybe/AI-image-detector"
|
| 50 |
+
|
| 51 |
+
# ==========================================
|
| 52 |
+
|
| 53 |
+
# --- Secrets Management ---
|
| 54 |
+
def get_token():
|
| 55 |
+
if key := os.environ.get("HF_TOKEN"): return key
|
| 56 |
+
if hasattr(st, "secrets") and "HF_TOKEN" in st.secrets: return st.secrets["HF_TOKEN"]
|
| 57 |
+
return None
|
| 58 |
+
|
| 59 |
+
HF_TOKEN = get_token()
|
| 60 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
| 61 |
+
|
| 62 |
+
# --- Custom CSS ---
|
| 63 |
def inject_custom_css():
|
| 64 |
st.markdown("""
|
| 65 |
<style>
|
| 66 |
+
/* Modern Clean Look */
|
| 67 |
+
.stApp { background-color: #FFFFFF; color: #333333; font-family: 'Helvetica Neue', sans-serif; }
|
| 68 |
+
|
| 69 |
+
/* Headings */
|
| 70 |
+
h1 { color: #2C3E50; font-weight: 800; }
|
| 71 |
+
h2 { color: #34495E; font-weight: 600; }
|
| 72 |
+
|
| 73 |
+
/* Hero Section */
|
| 74 |
+
.hero-box {
|
| 75 |
+
padding: 40px;
|
| 76 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 77 |
+
border-radius: 20px;
|
| 78 |
+
color: white;
|
| 79 |
+
text-align: center;
|
| 80 |
+
margin-bottom: 30px;
|
| 81 |
+
}
|
| 82 |
+
.hero-title { font-size: 3rem; font-weight: bold; margin-bottom: 10px; }
|
| 83 |
+
.hero-subtitle { font-size: 1.2rem; opacity: 0.9; }
|
| 84 |
+
|
| 85 |
+
/* Feature Cards */
|
| 86 |
+
.feature-card {
|
| 87 |
+
background: #F8F9FA;
|
| 88 |
+
padding: 20px;
|
| 89 |
+
border-radius: 15px;
|
| 90 |
+
border: 1px solid #EEEEEE;
|
| 91 |
+
text-align: center;
|
| 92 |
+
transition: transform 0.2s;
|
| 93 |
+
}
|
| 94 |
+
.feature-card:hover { transform: translateY(-5px); border-color: #764ba2; }
|
| 95 |
+
.emoji-icon { font-size: 3rem; margin-bottom: 10px; display: block; }
|
| 96 |
+
|
| 97 |
+
/* Result Stats */
|
| 98 |
+
.stat-box {
|
| 99 |
+
text-align: center;
|
| 100 |
+
padding: 15px;
|
| 101 |
+
border-radius: 12px;
|
| 102 |
+
background: white;
|
| 103 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.05);
|
| 104 |
+
border: 1px solid #EEE;
|
| 105 |
+
}
|
| 106 |
+
.stat-num { font-size: 24px; font-weight: 900; color: #333; }
|
| 107 |
+
.stat-txt { font-size: 12px; text-transform: uppercase; color: #777; letter-spacing: 1px; }
|
| 108 |
+
|
| 109 |
+
/* Custom Button */
|
| 110 |
+
.stButton>button {
|
| 111 |
+
border-radius: 30px;
|
| 112 |
+
font-weight: bold;
|
| 113 |
+
border: none;
|
| 114 |
+
padding: 0.5rem 2rem;
|
| 115 |
+
transition: all 0.3s;
|
| 116 |
+
}
|
| 117 |
</style>
|
| 118 |
""", unsafe_allow_html=True)
|
| 119 |
|
| 120 |
+
# --- Load Models ---
|
|
|
|
|
|
|
| 121 |
@st.cache_resource(show_spinner=False)
|
| 122 |
+
def load_ai_squad():
|
| 123 |
+
squad = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
try:
|
| 125 |
+
squad['fake'] = pipeline("text-classification", model=MODEL_FAKE, token=HF_TOKEN)
|
| 126 |
+
squad['mood'] = pipeline("sentiment-analysis", model=MODEL_MOOD, tokenizer=MODEL_MOOD, token=HF_TOKEN)
|
| 127 |
+
squad['grammar'] = pipeline("text-classification", model=MODEL_GRAMMAR, token=HF_TOKEN)
|
| 128 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
try:
|
| 130 |
+
squad['img_a'] = pipeline("image-classification", model=MODEL_IMG_A, token=HF_TOKEN)
|
| 131 |
+
squad['img_b'] = pipeline("image-classification", model=MODEL_IMG_B, token=HF_TOKEN)
|
| 132 |
+
squad['img_status'] = "Active"
|
| 133 |
+
except:
|
| 134 |
+
if 'img_a' not in squad:
|
| 135 |
+
squad['img_a'] = pipeline("image-classification", model=MODEL_IMG_A, token=HF_TOKEN)
|
| 136 |
+
squad['img_status'] = "Partial"
|
| 137 |
+
|
| 138 |
+
except Exception as e:
|
| 139 |
+
return None, str(e)
|
| 140 |
+
return squad, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# --- Logic: Analyze Text ---
|
| 143 |
+
def check_text(text, squad):
|
| 144 |
+
# 1. Bot Check
|
| 145 |
+
res_fake = squad['fake'](text[:512])[0]
|
| 146 |
+
bot_score = res_fake['score'] if res_fake['label'] == 'Fake' else (1 - res_fake['score'])
|
| 147 |
|
| 148 |
+
# 2. Mood Check
|
| 149 |
+
res_mood = squad['mood'](text[:512])[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
# 3. Grammar Check
|
| 152 |
+
res_grammar = squad['grammar'](text[:512])[0]
|
| 153 |
+
grammar_score = res_grammar['score'] if res_grammar['label'] == 'LABEL_1' else (1 - res_grammar['score'])
|
| 154 |
|
| 155 |
return {
|
| 156 |
+
"bot_score": bot_score * 100,
|
| 157 |
+
"mood_label": res_mood['label'],
|
| 158 |
+
"grammar_score": grammar_score * 100
|
|
|
|
|
|
|
|
|
|
| 159 |
}
|
| 160 |
|
| 161 |
+
# --- Logic: Analyze Image ---
|
| 162 |
+
def check_image(img, squad):
|
| 163 |
+
score_a = 0.0
|
| 164 |
+
score_b = 0.0
|
| 165 |
+
ai_words = ['fake', 'artificial', 'ai', 'generated']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
if 'img_a' in squad:
|
| 168 |
+
for r in squad['img_a'](img):
|
| 169 |
+
if any(w in r['label'].lower() for w in ai_words): score_a = r['score']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
if 'img_b' in squad:
|
| 172 |
+
for r in squad['img_b'](img):
|
| 173 |
+
if any(w in r['label'].lower() for w in ai_words): score_b = r['score']
|
| 174 |
+
else: score_b = score_a
|
| 175 |
+
|
| 176 |
+
avg_ai = (score_a + score_b) / 2
|
| 177 |
+
match_level = 1.0 - abs(score_a - score_b)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
return {"ai_chance": avg_ai * 100, "match": match_level}
|
| 180 |
|
| 181 |
+
def get_image_from_url(url):
|
|
|
|
|
|
|
|
|
|
| 182 |
try:
|
| 183 |
headers = {'User-Agent': 'Mozilla/5.0'}
|
| 184 |
+
r = requests.get(url, headers=headers, timeout=5, stream=True)
|
| 185 |
+
return Image.open(io.BytesIO(r.content)).convert("RGB")
|
| 186 |
+
except: return None
|
| 187 |
+
|
| 188 |
+
# --- Plotting ---
|
| 189 |
+
def simple_chart(stats):
|
| 190 |
+
labels = ['Bot Chance', 'Grammar', 'Mood']
|
| 191 |
+
values = [stats['bot_score'], stats['grammar_score'], 50]
|
| 192 |
+
values += values[:1]
|
| 193 |
+
angles = [n / 3 * 2 * math.pi for n in range(3)] + [0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
fig, ax = plt.subplots(figsize=(3, 3), subplot_kw=dict(polar=True))
|
| 196 |
+
ax.set_facecolor('white')
|
| 197 |
+
plt.gcf().patch.set_facecolor('white')
|
| 198 |
+
ax.plot(angles, values, color='#764ba2', linewidth=2)
|
| 199 |
+
ax.fill(angles, values, color='#764ba2', alpha=0.2)
|
| 200 |
+
ax.set_xticks(angles[:-1]); ax.set_xticklabels(labels, size=8)
|
| 201 |
+
ax.set_yticks([]); ax.spines['polar'].set_visible(False)
|
| 202 |
+
return fig
|
| 203 |
|
| 204 |
+
# --- PAGES ---
|
| 205 |
+
|
| 206 |
+
def landing_page():
|
|
|
|
| 207 |
st.markdown("""
|
| 208 |
+
<div class="hero-box">
|
| 209 |
+
<div class="hero-title">๐ก๏ธ Review Validator</div>
|
| 210 |
+
<div class="hero-subtitle">We check if reviews are Real or Fake. We check if product photos are Real or AI.</div>
|
| 211 |
+
</div>
|
| 212 |
""", unsafe_allow_html=True)
|
| 213 |
+
|
| 214 |
+
c1, c2, c3 = st.columns(3)
|
| 215 |
+
with c1:
|
| 216 |
+
st.markdown("""
|
| 217 |
+
<div class="feature-card">
|
| 218 |
+
<span class="emoji-icon">๐ค</span>
|
| 219 |
+
<h3>Bot Buster</h3>
|
| 220 |
+
<p>We use AI to catch other AI! If a robot wrote the review, we will know.</p>
|
| 221 |
+
</div>
|
| 222 |
+
""", unsafe_allow_html=True)
|
| 223 |
+
with c2:
|
| 224 |
+
st.markdown("""
|
| 225 |
+
<div class="feature-card">
|
| 226 |
+
<span class="emoji-icon">๐ธ</span>
|
| 227 |
+
<h3>Fake Photo Finder</h3>
|
| 228 |
+
<p>Is that burger real or drawn by a computer? We check the pixels.</p>
|
| 229 |
+
</div>
|
| 230 |
+
""", unsafe_allow_html=True)
|
| 231 |
+
with c3:
|
| 232 |
+
st.markdown("""
|
| 233 |
+
<div class="feature-card">
|
| 234 |
+
<span class="emoji-icon">๐ฎ</span>
|
| 235 |
+
<h3>Simple & Fast</h3>
|
| 236 |
+
<p>No complex words. Just Red (Bad) or Green (Good). Easy for everyone.</p>
|
| 237 |
+
</div>
|
| 238 |
+
""", unsafe_allow_html=True)
|
| 239 |
+
|
| 240 |
+
st.write("")
|
| 241 |
+
st.write("")
|
| 242 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
| 243 |
+
with col2:
|
| 244 |
+
if st.button("๐ START CHECKING REVIEWS NOW", type="primary", use_container_width=True):
|
| 245 |
+
st.session_state['page'] = 'detector'
|
| 246 |
+
st.rerun()
|
| 247 |
+
|
| 248 |
+
def detector_page(squad):
|
| 249 |
+
# Header & Selector
|
| 250 |
+
c1, c2 = st.columns([3, 1])
|
| 251 |
+
with c1:
|
| 252 |
+
st.markdown("### ๐ Select the Website")
|
| 253 |
+
platform = st.selectbox("Where is this review from?", ["Amazon", "Flipkart", "Zomato", "Swiggy", "Myntra", "Other"], label_visibility="collapsed")
|
| 254 |
+
with c2:
|
| 255 |
+
if st.button("โฌ
๏ธ Back Home"):
|
| 256 |
+
st.session_state['page'] = 'landing'
|
| 257 |
+
st.rerun()
|
| 258 |
+
|
| 259 |
+
st.divider()
|
| 260 |
+
|
| 261 |
+
# Main Tabs
|
| 262 |
+
tab1, tab2 = st.tabs(["๐ Check Review Text", "๐ธ Check Product Image"])
|
| 263 |
|
| 264 |
+
# --- TEXT ---
|
|
|
|
|
|
|
| 265 |
with tab1:
|
| 266 |
+
col1, col2 = st.columns([2, 1])
|
| 267 |
with col1:
|
| 268 |
+
txt = st.text_area("Paste Review Here:", height=150, placeholder="Example: I ordered this yesterday and it is amazing...")
|
| 269 |
with col2:
|
| 270 |
+
st.info("๐ก Tip: Paste the full review for the best result.")
|
| 271 |
+
if st.button("Analyze Text", type="primary", use_container_width=True):
|
| 272 |
+
if txt:
|
| 273 |
+
res = check_text(txt, squad)
|
| 274 |
+
st.session_state['text_res'] = res
|
| 275 |
+
|
| 276 |
+
if 'text_res' in st.session_state:
|
| 277 |
+
res = st.session_state['text_res']
|
| 278 |
+
st.markdown("---")
|
| 279 |
+
|
| 280 |
+
k1, k2, k3 = st.columns(3)
|
| 281 |
+
# Bot Score
|
| 282 |
+
color = "red" if res['bot_score'] > 50 else "green"
|
| 283 |
+
k1.markdown(f"""<div class="stat-box"><div class="stat-num" style="color:{color}">{res['bot_score']:.0f}%</div><div class="stat-txt">Bot Chance</div></div>""", unsafe_allow_html=True)
|
| 284 |
+
# Grammar
|
| 285 |
+
k2.markdown(f"""<div class="stat-box"><div class="stat-num">{res['grammar_score']:.0f}%</div><div class="stat-txt">Grammar Quality</div></div>""", unsafe_allow_html=True)
|
| 286 |
+
# Mood
|
| 287 |
+
k3.markdown(f"""<div class="stat-box"><div class="stat-num">{res['mood_label']}</div><div class="stat-txt">Review Mood</div></div>""", unsafe_allow_html=True)
|
| 288 |
+
|
| 289 |
+
st.write("")
|
| 290 |
+
v1, v2 = st.columns([1, 2])
|
| 291 |
+
with v1: st.pyplot(simple_chart(res))
|
| 292 |
+
with v2:
|
| 293 |
+
if res['bot_score'] > 70:
|
| 294 |
+
st.error("๐จ **FAKE ALERT:** This review looks like it was written by a robot.")
|
| 295 |
+
elif res['bot_score'] > 40:
|
| 296 |
+
st.warning("๐ค **UNSURE:** It looks a bit weird, but could be real.")
|
| 297 |
+
else:
|
| 298 |
+
st.success("โ
**REAL:** This looks like a genuine human review.")
|
| 299 |
|
| 300 |
+
# --- IMAGE ---
|
| 301 |
with tab2:
|
| 302 |
+
col_in, col_view = st.columns([1, 1])
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
+
with col_in:
|
| 305 |
+
st.markdown("#### Step 1: Provide Image")
|
| 306 |
+
method = st.radio("Input Method", ["Paste URL", "Upload File"], horizontal=True, label_visibility="collapsed")
|
| 307 |
|
| 308 |
+
img = None
|
| 309 |
+
if method == "Paste URL":
|
| 310 |
+
url = st.text_input("Paste Image Link:")
|
| 311 |
+
if url: img = get_image_from_url(url)
|
| 312 |
+
else:
|
| 313 |
+
up_file = st.file_uploader("Upload Image", type=['jpg','png','jpeg'])
|
| 314 |
+
if up_file:
|
| 315 |
+
try: img = Image.open(up_file).convert("RGB")
|
| 316 |
+
except: st.error("Error reading file")
|
| 317 |
+
|
| 318 |
+
if st.button("Scan Image", type="primary", use_container_width=True):
|
| 319 |
if img:
|
| 320 |
+
with st.spinner("Scanning for AI patterns..."):
|
| 321 |
+
data = check_image(img, squad)
|
| 322 |
+
st.session_state['img_res'] = data
|
| 323 |
+
st.session_state['current_img'] = img
|
| 324 |
+
else:
|
| 325 |
+
st.error("Please provide a valid image first.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
+
with col_view:
|
| 328 |
+
if 'current_img' in st.session_state:
|
| 329 |
+
st.image(st.session_state['current_img'], use_column_width=True, caption="Analyzed Image")
|
| 330 |
+
|
| 331 |
+
if 'img_res' in st.session_state:
|
| 332 |
+
data = st.session_state['img_res']
|
| 333 |
+
ai_score = data['ai_chance']
|
| 334 |
+
|
| 335 |
+
st.markdown("#### Step 2: Results")
|
| 336 |
+
|
| 337 |
+
if data['match'] < 0.6:
|
| 338 |
+
st.warning("๐ค **Confusing Image:** Our models disagree. It might be heavily filtered.")
|
| 339 |
+
elif ai_score > 60:
|
| 340 |
+
st.error(f"๐ค **AI GENERATED** ({ai_score:.0f}% sure)")
|
| 341 |
+
st.write("We found digital patterns that cameras don't make.")
|
| 342 |
else:
|
| 343 |
+
st.success(f"๐ธ **REAL PHOTO** ({100-ai_score:.0f}% sure)")
|
| 344 |
+
st.write("This looks like a standard camera photo.")
|
| 345 |
+
|
| 346 |
+
st.progress(ai_score/100, text="AI Probability Bar")
|
| 347 |
+
|
| 348 |
+
# --- MAIN CONTROLLER ---
|
| 349 |
+
def main():
|
| 350 |
+
inject_custom_css()
|
| 351 |
+
|
| 352 |
+
if 'page' not in st.session_state:
|
| 353 |
+
st.session_state['page'] = 'landing'
|
| 354 |
+
|
| 355 |
+
with st.spinner("Loading AI Models..."):
|
| 356 |
+
squad, err = load_ai_squad()
|
| 357 |
+
|
| 358 |
+
if not squad:
|
| 359 |
+
st.error("System Error: Could not connect to AI brains.")
|
| 360 |
+
return
|
| 361 |
+
|
| 362 |
+
if st.session_state['page'] == 'landing':
|
| 363 |
+
landing_page()
|
| 364 |
+
else:
|
| 365 |
+
detector_page(squad)
|
| 366 |
|
| 367 |
if __name__ == "__main__":
|
| 368 |
main()
|