File size: 10,125 Bytes
a7035da 41cb4a2 a7035da 41cb4a2 a7035da 41cb4a2 a7035da 3839c42 41cb4a2 a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df a7035da ae374df 3839c42 a7035da f3172b2 3839c42 ae374df 3839c42 ae374df 3839c42 a7035da 237dd50 a7035da 41cb4a2 7f5f422 237dd50 41cb4a2 3839c42 41cb4a2 f3172b2 a7035da f3172b2 a7035da f3172b2 a7035da 41cb4a2 f3172b2 41cb4a2 b21889c 41cb4a2 f3172b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> dict:
"""Search Tavily for a query and return maximum 3 results,
formatted with source URL, title, and content.
Args:
query: The search query.
"""
tavily_tool = TavilySearchResults(max_results=3)
# 'search_docs' is expected to be a list of dictionaries based on your sample.
# Each dictionary contains keys like 'url', 'content', 'title'.
search_docs = tavily_tool.invoke(query)
final_formatted_docs = []
if isinstance(search_docs, list):
for doc_dict in search_docs: # Iterate through the list of result dictionaries
if isinstance(doc_dict, dict):
# Extract data using dictionary keys found in your sample:
source_url = doc_dict.get(
"url",
"N/A"
) # From your sample, e.g., 'https://www.biblegateway.com/...'
page_content = doc_dict.get(
"content",
""
) # From your sample, e.g., '8\xa0When the king’s order...'
title = doc_dict.get(
"title",
"No Title Provided"
) # From your sample, e.g., 'Esther 1-10 NIV...'
# Format the output string including source, title, and content
final_formatted_docs.append(
f'<Document source="{source_url}" title="{title}"/>\n{page_content}\n</Document>'
)
else:
# This handles cases where an item in the list returned by Tavily might not be a dictionary.
print(
f"[web_search_DEBUG] Expected a dictionary in search_docs list, but got {type(doc_dict)}: {str(doc_dict)[:100]}"
)
elif isinstance(search_docs, str):
# This handles cases where the Tavily tool might return a single string (e.g., an error message)
print(
f"[web_search_DEBUG] Tavily search returned a string, possibly an error: {search_docs}"
)
final_formatted_docs.append(
f'<Document source="Error" title="Error"/>\n{search_docs}\n</Document>'
)
else:
# This handles any other unexpected types for search_docs
print(
f"[web_search_DEBUG] Expected search_docs to be a list or string, but got {type(search_docs)}. Output may be empty."
)
joined_formatted_docs = "\n\n---\n\n".join(final_formatted_docs)
return {"web_results": joined_formatted_docs}
@tool
def arvix_search(query: str) -> dict:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
# print(f"[arvix_search_DEBUG] ArxivLoader found {len(search_docs)} documents.")
processed_docs_str_list = []
for i, doc in enumerate(search_docs):
# print(f"\n--- [arvix_search_DEBUG] Document {i+1} ---")
# print(f"Metadata: {doc.metadata}")
# print(f"Page Content (first 200 chars): {doc.page_content[:200]}...")
# print(f"--- End Debug for Document {i+1} ---\n")
# Your original logic to format the document (with the fix for 'source')
title = doc.metadata.get("Title", "N/A")
published = doc.metadata.get(
"Published",
"N/A"
) # 'page' might often be empty for ArxivLoader results
# content_snippet = doc.page_content[:3000]
content_snippet = doc.page_content
formatted_doc_str = f'<Document title="{title}" published="{published}"/>\n{content_snippet}\n</Document>'
processed_docs_str_list.append(formatted_doc_str)
formatted_search_results = "\n\n---\n\n".join(processed_docs_str_list)
# print(f"[arvix_search_DEBUG] Returning: {{\"arvix_results\": \"{formatted_search_results[:100]}...\"}}")
return {"arvix_results": formatted_search_results}
@tool
def similar_question_search(question: str) -> dict:
"""Search the vector database for similar questions and return the first results.
Args:
question: the question human provided."""
matched_docs = vector_store.similarity_search(question, 3)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in matched_docs
]
)
return {"similar_questions": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="question_retriever",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
similar_question_search,
]
# Build graph function
def build_graph(provider: str = "google"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-preview-04-17", temperature=0)
# elif provider == "groq":
# # Groq https://console.groq.com/docs/models
# llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
# TODO: Add huggingface endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph(provider="google")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|