File size: 10,125 Bytes
a7035da
41cb4a2
 
 
a7035da
 
 
41cb4a2
 
a7035da
 
 
41cb4a2
 
a7035da
3839c42
41cb4a2
 
 
a7035da
ae374df
a7035da
 
 
 
 
 
 
 
 
 
ae374df
a7035da
 
 
ae374df
a7035da
 
 
 
 
 
ae374df
a7035da
 
 
ae374df
a7035da
 
 
 
 
 
ae374df
a7035da
ae374df
a7035da
ae374df
a7035da
 
 
 
 
 
 
 
ae374df
a7035da
 
 
ae374df
a7035da
 
 
 
 
 
ae374df
a7035da
ae374df
a7035da
ae374df
a7035da
 
 
 
 
 
 
ae374df
 
a7035da
 
ae374df
a7035da
ae374df
 
 
 
a7035da
ae374df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7035da
 
ae374df
a7035da
ae374df
a7035da
 
 
ae374df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7035da
 
 
ae374df
 
 
 
3839c42
a7035da
 
 
 
 
 
 
 
f3172b2
 
 
 
 
 
 
 
 
 
 
3839c42
 
ae374df
3839c42
 
 
 
 
 
 
 
 
 
 
 
ae374df
3839c42
a7035da
 
237dd50
a7035da
41cb4a2
 
 
7f5f422
237dd50
 
 
41cb4a2
 
 
 
 
 
 
 
 
 
 
3839c42
41cb4a2
 
 
 
f3172b2
 
 
 
 
 
 
 
 
a7035da
 
f3172b2
a7035da
 
f3172b2
 
a7035da
 
 
 
 
 
 
 
41cb4a2
 
 
f3172b2
41cb4a2
b21889c
41cb4a2
 
 
f3172b2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client

load_dotenv()


@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.

    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Add two numbers.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.

    Args:
        a: first int
        b: second int
    """
    return a - b


@tool
def divide(a: int, b: int) -> float:
    """Divide two numbers.

    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.

    Args:
        a: first int
        b: second int
    """
    return a % b


@tool
def wiki_search(query: str) -> dict:
    """Search Wikipedia for a query and return maximum 2 results.

    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


@tool
def web_search(query: str) -> dict:
    """Search Tavily for a query and return maximum 3 results,
    formatted with source URL, title, and content.

    Args:
        query: The search query.
    """

    tavily_tool = TavilySearchResults(max_results=3)

    # 'search_docs' is expected to be a list of dictionaries based on your sample.
    # Each dictionary contains keys like 'url', 'content', 'title'.
    search_docs = tavily_tool.invoke(query)

    final_formatted_docs = []

    if isinstance(search_docs, list):
        for doc_dict in search_docs:  # Iterate through the list of result dictionaries
            if isinstance(doc_dict, dict):
                # Extract data using dictionary keys found in your sample:
                source_url = doc_dict.get(
                    "url",
                    "N/A"
                    )  # From your sample, e.g., 'https://www.biblegateway.com/...'
                page_content = doc_dict.get(
                    "content",
                    ""
                    )  # From your sample, e.g., '8\xa0When the king’s order...'
                title = doc_dict.get(
                    "title",
                    "No Title Provided"
                    )  # From your sample, e.g., 'Esther 1-10 NIV...'

                # Format the output string including source, title, and content
                final_formatted_docs.append(
                    f'<Document source="{source_url}" title="{title}"/>\n{page_content}\n</Document>'
                )
            else:
                # This handles cases where an item in the list returned by Tavily might not be a dictionary.
                print(
                    f"[web_search_DEBUG] Expected a dictionary in search_docs list, but got {type(doc_dict)}: {str(doc_dict)[:100]}"
                    )
    elif isinstance(search_docs, str):
        # This handles cases where the Tavily tool might return a single string (e.g., an error message)
        print(
            f"[web_search_DEBUG] Tavily search returned a string, possibly an error: {search_docs}"
            )
        final_formatted_docs.append(
            f'<Document source="Error" title="Error"/>\n{search_docs}\n</Document>'
        )
    else:
        # This handles any other unexpected types for search_docs
        print(
            f"[web_search_DEBUG] Expected search_docs to be a list or string, but got {type(search_docs)}. Output may be empty."
            )

    joined_formatted_docs = "\n\n---\n\n".join(final_formatted_docs)

    return {"web_results": joined_formatted_docs}


@tool
def arvix_search(query: str) -> dict:
    """Search Arxiv for a query and return maximum 3 result.

    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()

    # print(f"[arvix_search_DEBUG] ArxivLoader found {len(search_docs)} documents.")

    processed_docs_str_list = []
    for i, doc in enumerate(search_docs):
        # print(f"\n--- [arvix_search_DEBUG] Document {i+1} ---")
        # print(f"Metadata: {doc.metadata}")
        # print(f"Page Content (first 200 chars): {doc.page_content[:200]}...")
        # print(f"--- End Debug for Document {i+1} ---\n")

        # Your original logic to format the document (with the fix for 'source')
        title = doc.metadata.get("Title", "N/A")
        published = doc.metadata.get(
            "Published",
            "N/A"
            )  # 'page' might often be empty for ArxivLoader results
        # content_snippet = doc.page_content[:3000]
        content_snippet = doc.page_content

        formatted_doc_str = f'<Document title="{title}" published="{published}"/>\n{content_snippet}\n</Document>'
        processed_docs_str_list.append(formatted_doc_str)

    formatted_search_results = "\n\n---\n\n".join(processed_docs_str_list)

    # print(f"[arvix_search_DEBUG] Returning: {{\"arvix_results\": \"{formatted_search_results[:100]}...\"}}")

    return {"arvix_results": formatted_search_results}


@tool
def similar_question_search(question: str) -> dict:
    """Search the vector database for similar questions and return the first results.

    Args:
        question: the question human provided."""
    matched_docs = vector_store.similarity_search(question, 3)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in matched_docs
        ]
    )
    return {"similar_questions": formatted_search_docs}


# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") #  dim=768
supabase: Client = create_client(
    os.environ.get("SUPABASE_URL"), 
    os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding= embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="question_retriever",
    description="A tool to retrieve similar questions from a vector store.",
)

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
    similar_question_search,
]

# Build graph function
def build_graph(provider: str = "google"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-preview-04-17", temperature=0)
    # elif provider == "groq":
    #     # Groq https://console.groq.com/docs/models
    #     llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
    elif provider == "huggingface":
        # TODO: Add huggingface endpoint
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    def retriever(state: MessagesState):
        """Retriever node"""
        similar_question = vector_store.similarity_search(state["messages"][0].content)
        example_msg = HumanMessage(
            content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
        )
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()

# test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    # Build the graph
    graph = build_graph(provider="google")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()