Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,1220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
######################## WRITE YOUR CODE HERE #########################
|
3 |
+
# Import necessary libraries
|
4 |
+
import os # Interacting with the operating system (reading/writing files)
|
5 |
+
import chromadb # High-performance vector database for storing/querying dense vectors
|
6 |
+
from dotenv import load_dotenv # Loading environment variables from a .env file
|
7 |
+
import json # Parsing and handling JSON data
|
8 |
+
|
9 |
+
# LangChain imports
|
10 |
+
from langchain_core.documents import Document # Document data structures
|
11 |
+
from langchain_core.runnables import RunnablePassthrough # LangChain core library for running pipelines
|
12 |
+
from langchain_core.output_parsers import StrOutputParser # String output parser
|
13 |
+
from langchain.prompts import ChatPromptTemplate # Template for chat prompts
|
14 |
+
from langchain.chains.query_constructor.base import AttributeInfo # Base classes for query construction
|
15 |
+
from langchain.retrievers.self_query.base import SelfQueryRetriever # Base classes for self-querying retrievers
|
16 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker # Document compressors
|
17 |
+
from langchain.retrievers import ContextualCompressionRetriever # Contextual compression retrievers
|
18 |
+
|
19 |
+
# LangChain community & experimental imports
|
20 |
+
from langchain_community.vectorstores import Chroma # Implementations of vector stores like Chroma
|
21 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader # Document loaders for PDFs
|
22 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder # Cross-encoders from HuggingFace
|
23 |
+
from langchain_experimental.text_splitter import SemanticChunker # Experimental text splitting methods
|
24 |
+
from langchain.text_splitter import (
|
25 |
+
CharacterTextSplitter, # Splitting text by characters
|
26 |
+
RecursiveCharacterTextSplitter # Recursive splitting of text by characters
|
27 |
+
)
|
28 |
+
from langchain_core.tools import tool
|
29 |
+
from langchain.agents import create_tool_calling_agent, AgentExecutor
|
30 |
+
from langchain_core.prompts import ChatPromptTemplate
|
31 |
+
|
32 |
+
# LangChain OpenAI imports
|
33 |
+
from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI # OpenAI embeddings and models
|
34 |
+
#from langchain.embeddings.openai import OpenAIEmbeddings # OpenAI embeddings for text vectors
|
35 |
+
from langchain.memory import ConversationSummaryBufferMemory
|
36 |
+
|
37 |
+
from langchain_openai import ChatOpenAI
|
38 |
+
from langchain_community.embeddings import OpenAIEmbeddings
|
39 |
+
from langchain_openai import OpenAIEmbeddings
|
40 |
+
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
41 |
+
from langchain_community.vectorstores import Chroma
|
42 |
+
|
43 |
+
|
44 |
+
from langchain_community.utilities.sql_database import SQLDatabase
|
45 |
+
from langchain_community.agent_toolkits import create_sql_agent
|
46 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
47 |
+
from langchain_core.tools import tool
|
48 |
+
from langchain.agents import create_tool_calling_agent, AgentExecutor
|
49 |
+
|
50 |
+
# LlamaParse & LlamaIndex imports
|
51 |
+
from llama_parse import LlamaParse # Document parsing library
|
52 |
+
from llama_index.core import Settings, SimpleDirectoryReader # Core functionalities of the LlamaIndex
|
53 |
+
|
54 |
+
# LangGraph import
|
55 |
+
from langgraph.graph import StateGraph, END, START # State graph for managing states in LangChain
|
56 |
+
|
57 |
+
# Pydantic import
|
58 |
+
from pydantic import BaseModel # Pydantic for data validation
|
59 |
+
|
60 |
+
# Typing imports
|
61 |
+
from typing import Dict, List, Tuple, Any, TypedDict # Python typing for function annotations
|
62 |
+
|
63 |
+
# Other utilities
|
64 |
+
import numpy as np # Numpy for numerical operations
|
65 |
+
from groq import Groq
|
66 |
+
from mem0 import MemoryClient
|
67 |
+
import streamlit as st
|
68 |
+
from datetime import datetime
|
69 |
+
|
70 |
+
#====================================SETUP=====================================#
|
71 |
+
# Fetch secrets from Hugging Face Spaces
|
72 |
+
api_key = os.environ["API_KEY"]
|
73 |
+
endpoint = os.environ["OPENAI_API_BASE"]
|
74 |
+
llama_api_key = os.environ['GROQ_API_KEY']
|
75 |
+
mem0_api_key = os.environ['mem0']
|
76 |
+
|
77 |
+
# Initialize the OpenAI embedding function for Chroma
|
78 |
+
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
79 |
+
api_base=endpoint, # Complete the code to define the API base endpoint
|
80 |
+
api_key=api_key, # Complete the code to define the API key
|
81 |
+
model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
|
82 |
+
)
|
83 |
+
|
84 |
+
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided endpoint and API key.
|
85 |
+
|
86 |
+
# Initialize the OpenAI Embeddings
|
87 |
+
embedding_model = OpenAIEmbeddings(
|
88 |
+
openai_api_base=endpoint,
|
89 |
+
openai_api_key=api_key,
|
90 |
+
model='text-embedding-ada-002'
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
# Initialize the Chat OpenAI model
|
95 |
+
llm = ChatOpenAI(
|
96 |
+
openai_api_base=endpoint,
|
97 |
+
openai_api_key=api_key,
|
98 |
+
model="gpt-4o-mini",
|
99 |
+
streaming=False
|
100 |
+
)
|
101 |
+
# This initializes the Chat OpenAI model with the provided endpoint, API key, deployment name, and a temperature setting of 0 (to control response variability).
|
102 |
+
|
103 |
+
# set the LLM and embedding model in the LlamaIndex settings.
|
104 |
+
Settings.llm = llm # Complete the code to define the LLM model
|
105 |
+
Settings.embedding = embedding_model # Complete the code to define the embedding model
|
106 |
+
|
107 |
+
#================================Creating Langgraph agent======================#
|
108 |
+
|
109 |
+
class AgentState(TypedDict):
|
110 |
+
query: str # The current user query
|
111 |
+
expanded_query: str # The expanded version of the user query
|
112 |
+
context: List[Dict[str, Any]] # Retrieved documents (content and metadata)
|
113 |
+
response: str # The generated response to the user query
|
114 |
+
precision_score: float # The precision score of the response
|
115 |
+
groundedness_score: float # The groundedness score of the response
|
116 |
+
groundedness_loop_count: int # Counter for groundedness refinement loops
|
117 |
+
precision_loop_count: int # Counter for precision refinement loops
|
118 |
+
feedback: str
|
119 |
+
query_feedback: str
|
120 |
+
groundedness_check: bool
|
121 |
+
loop_max_iter: int
|
122 |
+
|
123 |
+
def expand_query(state):
|
124 |
+
"""
|
125 |
+
Expands the user query to improve retrieval of nutrition disorder-related information.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
state (Dict): The current state of the workflow, containing the user query.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
Dict: The updated state with the expanded query.
|
132 |
+
"""
|
133 |
+
print("---------Expanding Query---------")
|
134 |
+
system_message = '''You are a climate change domain expert assisting in answering questions related to climate change mitigation and climate change solutions information.
|
135 |
+
Convert the user query into something that an environment professional would understand. Use domain related words.
|
136 |
+
Perform query expansion on the question received. If there are multiple common ways of phrasing a user question \
|
137 |
+
or common synonyms for key words in the question, make sure to return multiple versions \
|
138 |
+
of the query with the different phrasings.
|
139 |
+
|
140 |
+
If the query has multiple parts, split them into separate simpler queries. This is the only case where you can generate more than 3 queries.
|
141 |
+
|
142 |
+
If there are acronyms or words you are not familiar with, do not try to rephrase them.
|
143 |
+
|
144 |
+
Return only 3 versions of the question as a list.
|
145 |
+
Generate only a list of questions. Do not mention anything before or after the list.
|
146 |
+
|
147 |
+
Question:
|
148 |
+
{query}'''
|
149 |
+
|
150 |
+
|
151 |
+
expand_prompt = ChatPromptTemplate.from_messages([
|
152 |
+
("system", system_message),
|
153 |
+
("user", "Expand this query: {query} using the feedback: {query_feedback}")
|
154 |
+
|
155 |
+
])
|
156 |
+
|
157 |
+
chain = expand_prompt | llm | StrOutputParser()
|
158 |
+
expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]})
|
159 |
+
print("expanded_query", expanded_query)
|
160 |
+
state["expanded_query"] = expanded_query
|
161 |
+
return state
|
162 |
+
|
163 |
+
|
164 |
+
# Initialize the Chroma vector store for retrieving documents
|
165 |
+
vector_store = Chroma(
|
166 |
+
collection_name="climateBot",
|
167 |
+
persist_directory="./climateBot_db",
|
168 |
+
embedding_function=embedding_model
|
169 |
+
|
170 |
+
)
|
171 |
+
|
172 |
+
# Create a retriever from the vector store
|
173 |
+
retriever = vector_store.as_retriever(
|
174 |
+
search_type='similarity',
|
175 |
+
search_kwargs={'k': 3}
|
176 |
+
)
|
177 |
+
|
178 |
+
def retrieve_context(state):
|
179 |
+
"""
|
180 |
+
Retrieves context from the vector store using the expanded or original query.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
state (Dict): The current state of the workflow, containing the query and expanded query.
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
Dict: The updated state with the retrieved context.
|
187 |
+
"""
|
188 |
+
print("---------retrieve_context---------")
|
189 |
+
query = state['expanded_query'] # Complete the code to define the key for the expanded query
|
190 |
+
#print("Query used for retrieval:", query) # Debugging: Print the query
|
191 |
+
|
192 |
+
# Retrieve documents from the vector store
|
193 |
+
docs = retriever.invoke(query)
|
194 |
+
print("Retrieved documents:", docs) # Debugging: Print the raw docs object
|
195 |
+
|
196 |
+
# Extract both page_content and metadata from each document
|
197 |
+
context= [
|
198 |
+
{
|
199 |
+
"content": doc.page_content, # The actual content of the document
|
200 |
+
"metadata": doc.metadata # The metadata (e.g., source, page number, etc.)
|
201 |
+
}
|
202 |
+
for doc in docs
|
203 |
+
]
|
204 |
+
state['context'] = context # Complete the code to define the key for storing the context
|
205 |
+
print("Extracted context with metadata:", context)
|
206 |
+
|
207 |
+
return state
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
def craft_response(state: Dict) -> Dict:
|
212 |
+
"""
|
213 |
+
Generates a response using the retrieved context, focusing on nutrition disorders.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
state (Dict): The current state of the workflow, containing the query and retrieved context.
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
Dict: The updated state with the generated response.
|
220 |
+
"""
|
221 |
+
print("---------craft_response---------")
|
222 |
+
system_message = '''you are a smart nutrition disorder specialist. Use the context and feedback to respond to the query.
|
223 |
+
The answer you provide must come from the context and feedback provided.
|
224 |
+
If information provided is not enough to answer the query response with 'I don't know the answer. Not in my records'''
|
225 |
+
|
226 |
+
response_prompt = ChatPromptTemplate.from_messages([
|
227 |
+
("system", system_message),
|
228 |
+
("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}")
|
229 |
+
])
|
230 |
+
|
231 |
+
chain = response_prompt | llm
|
232 |
+
response = chain.invoke({
|
233 |
+
"query": state['query'],
|
234 |
+
"context": "\n".join([doc["content"] for doc in state['context']]),
|
235 |
+
"feedback": state['feedback'] # add feedback to the prompt
|
236 |
+
})
|
237 |
+
state['response'] = response
|
238 |
+
print("intermediate response: ", response)
|
239 |
+
|
240 |
+
return state
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
def score_groundedness(state: Dict) -> Dict:
|
245 |
+
"""
|
246 |
+
Checks whether the response is grounded in the retrieved context.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
state (Dict): The current state of the workflow, containing the response and context.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
Dict: The updated state with the groundedness score.
|
253 |
+
"""
|
254 |
+
print("---------check_groundedness---------")
|
255 |
+
system_message = '''Your task is to judge the groundedness of the response based on the context.
|
256 |
+
For each statement you must return verdict as 1 if the response is completely grounded in the context and 0 if the response is completely hallucinated.'''
|
257 |
+
|
258 |
+
groundedness_prompt = ChatPromptTemplate.from_messages([
|
259 |
+
("system", system_message),
|
260 |
+
("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:")
|
261 |
+
])
|
262 |
+
|
263 |
+
chain = groundedness_prompt | llm | StrOutputParser()
|
264 |
+
groundedness_score = float(chain.invoke({
|
265 |
+
"context": "\n".join([doc["content"] for doc in state['context']]),
|
266 |
+
"response": state['response'] # Complete the code to define the response
|
267 |
+
}))
|
268 |
+
print("groundedness_score: ", groundedness_score)
|
269 |
+
state['groundedness_loop_count'] += 1
|
270 |
+
print("#########Groundedness Incremented###########")
|
271 |
+
state['groundedness_score'] = groundedness_score
|
272 |
+
|
273 |
+
return state
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
def check_precision(state: Dict) -> Dict:
|
278 |
+
"""
|
279 |
+
Checks whether the response precisely addresses the user’s query.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
state (Dict): The current state of the workflow, containing the query and response.
|
283 |
+
|
284 |
+
Returns:
|
285 |
+
Dict: The updated state with the precision score.
|
286 |
+
"""
|
287 |
+
print("---------check_precision---------")
|
288 |
+
system_message = '''Given the query, response and context verify if the context was useful in arriving at the given answer.
|
289 |
+
Give precision score of "1" if useful and "0" if it was not useful.'''
|
290 |
+
|
291 |
+
precision_prompt = ChatPromptTemplate.from_messages([
|
292 |
+
("system", system_message),
|
293 |
+
("user", "Query: {query}\nResponse: {response}\n\nPrecision score:")
|
294 |
+
])
|
295 |
+
|
296 |
+
chain = precision_prompt | llm | StrOutputParser() # Complete the code to define the chain of processing
|
297 |
+
precision_score = float(chain.invoke({
|
298 |
+
"query": state['query'],
|
299 |
+
"response":state['response'] # Complete the code to access the response from the state
|
300 |
+
}))
|
301 |
+
state['precision_score'] = precision_score
|
302 |
+
print("precision_score:", precision_score)
|
303 |
+
state['precision_loop_count'] +=1
|
304 |
+
print("#########Precision Incremented###########")
|
305 |
+
return state
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
def refine_response(state: Dict) -> Dict:
|
310 |
+
"""
|
311 |
+
Suggests improvements for the generated response.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
state (Dict): The current state of the workflow, containing the query and response.
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
Dict: The updated state with response refinement suggestions.
|
318 |
+
"""
|
319 |
+
print("---------refine_response---------")
|
320 |
+
|
321 |
+
system_message = '''Your task is to refine the AI generated response by improving the accuracy and completeness of the response based on the contexxt.'''
|
322 |
+
|
323 |
+
refine_response_prompt = ChatPromptTemplate.from_messages([
|
324 |
+
("system", system_message),
|
325 |
+
("user", "Query: {query}\nResponse: {response}\n\n"
|
326 |
+
"What improvements can be made to enhance accuracy and completeness?")
|
327 |
+
])
|
328 |
+
|
329 |
+
chain = refine_response_prompt | llm| StrOutputParser()
|
330 |
+
|
331 |
+
# Store response suggestions in a structured format
|
332 |
+
feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}"
|
333 |
+
print("feedback: ", feedback)
|
334 |
+
print(f"State: {state}")
|
335 |
+
state['feedback'] = feedback
|
336 |
+
return state
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
def refine_query(state: Dict) -> Dict:
|
341 |
+
"""
|
342 |
+
Suggests improvements for the expanded query.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
state (Dict): The current state of the workflow, containing the query and expanded query.
|
346 |
+
|
347 |
+
Returns:
|
348 |
+
Dict: The updated state with query refinement suggestions.
|
349 |
+
"""
|
350 |
+
print("---------refine_query---------")
|
351 |
+
system_message = '''Your task is to refine the expanded query to improve the precision of the AI generated response.'''
|
352 |
+
|
353 |
+
refine_query_prompt = ChatPromptTemplate.from_messages([
|
354 |
+
("system", system_message),
|
355 |
+
("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n"
|
356 |
+
"What improvements can be made for a better search?")
|
357 |
+
])
|
358 |
+
|
359 |
+
chain = refine_query_prompt | llm | StrOutputParser()
|
360 |
+
|
361 |
+
# Store refinement suggestions without modifying the original expanded query
|
362 |
+
query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}"
|
363 |
+
print("query_feedback: ", query_feedback)
|
364 |
+
print(f"Groundedness loop count: {state['groundedness_loop_count']}")
|
365 |
+
state['query_feedback'] = query_feedback
|
366 |
+
return state
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
def should_continue_groundedness(state):
|
371 |
+
"""Decides if groundedness is sufficient or needs improvement."""
|
372 |
+
print("---------should_continue_groundedness---------")
|
373 |
+
print("groundedness loop count: ", state['groundedness_loop_count'])
|
374 |
+
if state['groundedness_score'] >= 1: # Complete the code to define the threshold for groundedness
|
375 |
+
print("Moving to precision")
|
376 |
+
return "check_precision"
|
377 |
+
else:
|
378 |
+
if state["groundedness_loop_count"] > state['loop_max_iter']:
|
379 |
+
return "max_iterations_reached"
|
380 |
+
else:
|
381 |
+
print(f"---------Groundedness Score Threshold Not met. Refining Response-----------")
|
382 |
+
return "refine_response"
|
383 |
+
|
384 |
+
|
385 |
+
def should_continue_precision(state: Dict) -> str:
|
386 |
+
"""Decides if precision is sufficient or needs improvement."""
|
387 |
+
print("---------should_continue_precision---------")
|
388 |
+
print("precision loop count: ", state['precision_loop_count'])
|
389 |
+
if state['precision_score']>=1: # Threshold for precision
|
390 |
+
return "pass" # Complete the workflow
|
391 |
+
else:
|
392 |
+
if state['precision_loop_count']> state['loop_max_iter']: # Maximum allowed loops
|
393 |
+
return "max_iterations_reached"
|
394 |
+
else:
|
395 |
+
print(f"---------Precision Score Threshold Not met. Refining Query-----------") # Debugging
|
396 |
+
return "refine_query" # Refine the query
|
397 |
+
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
def max_iterations_reached(state: Dict) -> Dict:
|
402 |
+
"""Handles the case when the maximum number of iterations is reached."""
|
403 |
+
print("---------max_iterations_reached---------")
|
404 |
+
"""Handles the case when the maximum number of iterations is reached."""
|
405 |
+
response = "I'm unable to refine the response further. Please provide more context or clarify your question."
|
406 |
+
state['response'] = response
|
407 |
+
return state
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
from langgraph.graph import END, StateGraph, START
|
412 |
+
|
413 |
+
def create_workflow() -> StateGraph:
|
414 |
+
"""Creates the updated workflow for the AI climate agent."""
|
415 |
+
|
416 |
+
workflow = StateGraph(AgentState)
|
417 |
+
|
418 |
+
# Add processing nodes
|
419 |
+
workflow.add_node("expand_query", expand_query) # Step 1: Expand user query.
|
420 |
+
workflow.add_node("retrieve_context", retrieve_context) # Step 2: Retrieve relevant documents.
|
421 |
+
workflow.add_node("craft_response", craft_response) # Step 3: Generate a response based on retrieved data.
|
422 |
+
workflow.add_node("score_groundedness", score_groundedness) # Step 4: Evaluate response grounding.
|
423 |
+
workflow.add_node("refine_response", refine_response) # Step 5: Improve response if it's weakly grounded.
|
424 |
+
workflow.add_node("check_precision", check_precision) # Step 6: Evaluate response precision.
|
425 |
+
workflow.add_node("refine_query",refine_query ) # Step 7: Improve query if response lacks precision. Complete with the function to refine the query
|
426 |
+
workflow.add_node("max_iterations_reached", max_iterations_reached) # Step 8: Handle max iterations.
|
427 |
+
|
428 |
+
# Main flow edges
|
429 |
+
workflow.add_edge(START, "expand_query")
|
430 |
+
workflow.add_edge("expand_query", "retrieve_context")
|
431 |
+
workflow.add_edge("retrieve_context", "craft_response")
|
432 |
+
workflow.add_edge("craft_response", "score_groundedness")
|
433 |
+
|
434 |
+
# Conditional edges based on groundedness check
|
435 |
+
workflow.add_conditional_edges(
|
436 |
+
"score_groundedness",
|
437 |
+
should_continue_groundedness, # Use the conditional function
|
438 |
+
{
|
439 |
+
"check_precision": "check_precision", # If well-grounded, proceed to precision check.
|
440 |
+
"refine_response": "refine_response", # If not, refine the response.
|
441 |
+
"max_iterations_reached": END # If max loops reached, exit.
|
442 |
+
}
|
443 |
+
)
|
444 |
+
|
445 |
+
workflow.add_edge("refine_response", "craft_response") # Refined responses are reprocessed.
|
446 |
+
|
447 |
+
# Conditional edges based on precision check
|
448 |
+
workflow.add_conditional_edges(
|
449 |
+
"check_precision",
|
450 |
+
should_continue_precision, # Use the conditional function
|
451 |
+
{
|
452 |
+
"pass": END, # If precise, complete the workflow.
|
453 |
+
"refine_query": "refine_query", # If imprecise, refine the query.
|
454 |
+
"max_iterations_reached": END # If max loops reached, exit.
|
455 |
+
}
|
456 |
+
)
|
457 |
+
|
458 |
+
workflow.add_edge("refine_query", "expand_query") # Refined queries go through expansion again.
|
459 |
+
workflow.add_edge("max_iterations_reached", END)
|
460 |
+
|
461 |
+
return workflow
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
#=========================== Defining the agentic rag tool ====================#
|
466 |
+
WORKFLOW_APP = create_workflow().compile()
|
467 |
+
@tool
|
468 |
+
def agentic_rag(query: str):
|
469 |
+
"""
|
470 |
+
Runs the RAG-based agent with conversation history for context-aware responses.
|
471 |
+
|
472 |
+
Args:
|
473 |
+
query (str): The current user query.
|
474 |
+
|
475 |
+
Returns:
|
476 |
+
Dict[str, Any]: The updated state with the generated response and conversation history.
|
477 |
+
"""
|
478 |
+
# Initialize state with necessary parameters
|
479 |
+
inputs = {
|
480 |
+
"query": query,
|
481 |
+
"expanded_query": "",
|
482 |
+
"context": [],
|
483 |
+
"response": "",
|
484 |
+
"precision_score": 0,
|
485 |
+
"groundedness_score":0,
|
486 |
+
"groundedness_loop_count": 5,
|
487 |
+
"precision_loop_count": 5,
|
488 |
+
"feedback": "",
|
489 |
+
"query_feedback": "",
|
490 |
+
"loop_max_iter": 5
|
491 |
+
}
|
492 |
+
|
493 |
+
output = WORKFLOW_APP.invoke(inputs)
|
494 |
+
|
495 |
+
return output
|
496 |
+
|
497 |
+
|
498 |
+
#================================ Guardrails ===========================#
|
499 |
+
llama_guard_client = Groq(api_key=llama_api_key)
|
500 |
+
# Function to filter user input with Llama Guard
|
501 |
+
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
|
502 |
+
"""
|
503 |
+
Filters user input using Llama Guard to ensure it is safe.
|
504 |
+
|
505 |
+
Parameters:
|
506 |
+
- user_input: The input provided by the user.
|
507 |
+
- model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b").
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
- The filtered and safe input.
|
511 |
+
"""
|
512 |
+
try:
|
513 |
+
# Create a request to Llama Guard to filter the user input
|
514 |
+
response = llama_guard_client.chat.completions.create(
|
515 |
+
messages=[{"role": "user", "content": user_input}],
|
516 |
+
model=model,
|
517 |
+
)
|
518 |
+
# Return the filtered input
|
519 |
+
return response.choices[0].message.content.strip()
|
520 |
+
except Exception as e:
|
521 |
+
print(f"Error with Llama Guard: {e}")
|
522 |
+
return None
|
523 |
+
|
524 |
+
|
525 |
+
#============================= Adding Memory to the agent using mem0 ===============================#
|
526 |
+
|
527 |
+
class climateBot:
|
528 |
+
def __init__(self):
|
529 |
+
"""
|
530 |
+
Initialize the NutritionBot class, setting up memory, the LLM client, tools, and the agent executor.
|
531 |
+
"""
|
532 |
+
|
533 |
+
|
534 |
+
#====================================SETUP=====================================#
|
535 |
+
# Fetch secrets from Hugging Face Spaces
|
536 |
+
api_key = os.environ["API_KEY"]
|
537 |
+
endpoint = os.environ["OPENAI_API_BASE"]
|
538 |
+
llama_api_key = os.environ['GROQ_API_KEY']
|
539 |
+
mem0_api_key = os.environ['mem0']
|
540 |
+
|
541 |
+
# Initialize the OpenAI embedding function for Chroma
|
542 |
+
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
543 |
+
api_base=endpoint, # Complete the code to define the API base endpoint
|
544 |
+
api_key=api_key, # Complete the code to define the API key
|
545 |
+
model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
|
546 |
+
)
|
547 |
+
|
548 |
+
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided endpoint and API key.
|
549 |
+
|
550 |
+
# Initialize the OpenAI Embeddings
|
551 |
+
embedding_model = OpenAIEmbeddings(
|
552 |
+
openai_api_base=endpoint,
|
553 |
+
openai_api_key=api_key,
|
554 |
+
model='text-embedding-ada-002'
|
555 |
+
)
|
556 |
+
|
557 |
+
|
558 |
+
# Initialize the Chat OpenAI model
|
559 |
+
llm = ChatOpenAI(
|
560 |
+
openai_api_base=endpoint,
|
561 |
+
openai_api_key=api_key,
|
562 |
+
model="gpt-4o-mini",
|
563 |
+
streaming=False
|
564 |
+
)
|
565 |
+
# This initializes the Chat OpenAI model with the provided endpoint, API key, deployment name, and a temperature setting of 0 (to control response variability).
|
566 |
+
|
567 |
+
# set the LLM and embedding model in the LlamaIndex settings.
|
568 |
+
Settings.llm = llm # Complete the code to define the LLM model
|
569 |
+
Settings.embedding = embedding_model # Complete the code to define the embedding model
|
570 |
+
|
571 |
+
#================================Creating Langgraph agent======================#
|
572 |
+
|
573 |
+
class AgentState(TypedDict):
|
574 |
+
query: str # The current user query
|
575 |
+
expanded_query: str # The expanded version of the user query
|
576 |
+
context: List[Dict[str, Any]] # Retrieved documents (content and metadata)
|
577 |
+
response: str # The generated response to the user query
|
578 |
+
precision_score: float # The precision score of the response
|
579 |
+
groundedness_score: float # The groundedness score of the response
|
580 |
+
groundedness_loop_count: int # Counter for groundedness refinement loops
|
581 |
+
precision_loop_count: int # Counter for precision refinement loops
|
582 |
+
feedback: str
|
583 |
+
query_feedback: str
|
584 |
+
groundedness_check: bool
|
585 |
+
loop_max_iter: int
|
586 |
+
|
587 |
+
def expand_query(state):
|
588 |
+
"""
|
589 |
+
Expands the user query to improve retrieval of nutrition disorder-related information.
|
590 |
+
|
591 |
+
Args:
|
592 |
+
state (Dict): The current state of the workflow, containing the user query.
|
593 |
+
|
594 |
+
Returns:
|
595 |
+
Dict: The updated state with the expanded query.
|
596 |
+
"""
|
597 |
+
print("---------Expanding Query---------")
|
598 |
+
system_message = '''You are a climate expert assisting in answering questions related to climate change mitigation strategies and information.
|
599 |
+
Convert the user query into something that a healthcare professional would understand. Use domain related words.
|
600 |
+
Perform query expansion on the question received. If there are multiple common ways of phrasing a user question \
|
601 |
+
or common synonyms for key words in the question, make sure to return multiple versions \
|
602 |
+
of the query with the different phrasings.
|
603 |
+
|
604 |
+
If the query has multiple parts, split them into separate simpler queries. This is the only case where you can generate more than 3 queries.
|
605 |
+
|
606 |
+
If there are acronyms or words you are not familiar with, do not try to rephrase them.
|
607 |
+
|
608 |
+
Return only 3 versions of the question as a list.
|
609 |
+
Generate only a list of questions. Do not mention anything before or after the list.
|
610 |
+
|
611 |
+
Question:
|
612 |
+
{query}'''
|
613 |
+
|
614 |
+
|
615 |
+
expand_prompt = ChatPromptTemplate.from_messages([
|
616 |
+
("system", system_message),
|
617 |
+
("user", "Expand this query: {query} using the feedback: {query_feedback}")
|
618 |
+
|
619 |
+
])
|
620 |
+
|
621 |
+
chain = expand_prompt | llm | StrOutputParser()
|
622 |
+
expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]})
|
623 |
+
print("expanded_query", expanded_query)
|
624 |
+
state["expanded_query"] = expanded_query
|
625 |
+
return state
|
626 |
+
|
627 |
+
|
628 |
+
# Initialize the Chroma vector store for retrieving documents
|
629 |
+
vector_store = Chroma(
|
630 |
+
collection_name="climateBot",
|
631 |
+
persist_directory="./climateBot_db",
|
632 |
+
embedding_function=embedding_model
|
633 |
+
|
634 |
+
)
|
635 |
+
|
636 |
+
# Create a retriever from the vector store
|
637 |
+
retriever = vector_store.as_retriever(
|
638 |
+
search_type='similarity',
|
639 |
+
search_kwargs={'k': 3}
|
640 |
+
)
|
641 |
+
|
642 |
+
def retrieve_context(state):
|
643 |
+
"""
|
644 |
+
Retrieves context from the vector store using the expanded or original query.
|
645 |
+
|
646 |
+
Args:
|
647 |
+
state (Dict): The current state of the workflow, containing the query and expanded query.
|
648 |
+
|
649 |
+
Returns:
|
650 |
+
Dict: The updated state with the retrieved context.
|
651 |
+
"""
|
652 |
+
print("---------retrieve_context---------")
|
653 |
+
|
654 |
+
query = state['expanded_query'] # Complete the code to define the key for the expanded query
|
655 |
+
|
656 |
+
|
657 |
+
# Retrieve documents from the vector store
|
658 |
+
docs = retriever.invoke(query)
|
659 |
+
print("Retrieved documents:", docs) # Debugging: Print the raw docs object
|
660 |
+
|
661 |
+
# Extract both page_content and metadata from each document
|
662 |
+
context= [
|
663 |
+
{
|
664 |
+
"content": doc.page_content, # The actual content of the document
|
665 |
+
"metadata": doc.metadata # The metadata (e.g., source, page number, etc.)
|
666 |
+
}
|
667 |
+
for doc in docs
|
668 |
+
]
|
669 |
+
state['context'] = context # Complete the code to define the key for storing the context
|
670 |
+
print("Extracted context with metadata:", context) # Debugging: Print the extracted context
|
671 |
+
|
672 |
+
return state
|
673 |
+
|
674 |
+
|
675 |
+
|
676 |
+
def craft_response(state: Dict) -> Dict:
|
677 |
+
"""
|
678 |
+
Generates a response using the retrieved context, focusing on nutrition disorders.
|
679 |
+
|
680 |
+
Args:
|
681 |
+
state (Dict): The current state of the workflow, containing the query and retrieved context.
|
682 |
+
|
683 |
+
Returns:
|
684 |
+
Dict: The updated state with the generated response.
|
685 |
+
"""
|
686 |
+
print("---------craft_response---------")
|
687 |
+
system_message = '''you are a smart nutrition disorder specialist. Use the context and feedback to respond to the query.
|
688 |
+
The answer you provide must come from the context and feedback provided.
|
689 |
+
If information provided is not enough to answer the query response with 'I don't know the answer. Not in my records'''
|
690 |
+
|
691 |
+
response_prompt = ChatPromptTemplate.from_messages([
|
692 |
+
("system", system_message),
|
693 |
+
("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}")
|
694 |
+
])
|
695 |
+
|
696 |
+
chain = response_prompt | llm
|
697 |
+
response = chain.invoke({
|
698 |
+
"query": state['query'],
|
699 |
+
"context": "\n".join([doc["content"] for doc in state['context']]),
|
700 |
+
"feedback": state['feedback'] # add feedback to the prompt
|
701 |
+
})
|
702 |
+
state['response'] = response
|
703 |
+
print("intermediate response: ", response)
|
704 |
+
|
705 |
+
return state
|
706 |
+
|
707 |
+
|
708 |
+
|
709 |
+
def score_groundedness(state: Dict) -> Dict:
|
710 |
+
"""
|
711 |
+
Checks whether the response is grounded in the retrieved context.
|
712 |
+
|
713 |
+
Args:
|
714 |
+
state (Dict): The current state of the workflow, containing the response and context.
|
715 |
+
|
716 |
+
Returns:
|
717 |
+
Dict: The updated state with the groundedness score.
|
718 |
+
"""
|
719 |
+
print("---------check_groundedness---------")
|
720 |
+
system_message = '''Your task is to judge the groundedness of the response based on the context.
|
721 |
+
For each statement you must return verdict as 1 if the response is completely grounded in the context and 0 if the response is completely hallucinated.'''
|
722 |
+
|
723 |
+
groundedness_prompt = ChatPromptTemplate.from_messages([
|
724 |
+
("system", system_message),
|
725 |
+
("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:")
|
726 |
+
])
|
727 |
+
|
728 |
+
chain = groundedness_prompt | llm | StrOutputParser()
|
729 |
+
groundedness_score = float(chain.invoke({
|
730 |
+
"context": "\n".join([doc["content"] for doc in state['context']]),
|
731 |
+
"response": state['response'] # Complete the code to define the response
|
732 |
+
}))
|
733 |
+
print("groundedness_score: ", groundedness_score)
|
734 |
+
state['groundedness_loop_count'] += 1
|
735 |
+
print("#########Groundedness Incremented###########")
|
736 |
+
state['groundedness_score'] = groundedness_score
|
737 |
+
|
738 |
+
return state
|
739 |
+
|
740 |
+
|
741 |
+
|
742 |
+
def check_precision(state: Dict) -> Dict:
|
743 |
+
"""
|
744 |
+
Checks whether the response precisely addresses the user’s query.
|
745 |
+
|
746 |
+
Args:
|
747 |
+
state (Dict): The current state of the workflow, containing the query and response.
|
748 |
+
|
749 |
+
Returns:
|
750 |
+
Dict: The updated state with the precision score.
|
751 |
+
"""
|
752 |
+
print("---------check_precision---------")
|
753 |
+
system_message = '''Given the query, response and context verify if the context was useful in arriving at the given answer.
|
754 |
+
Give precision score of "1" if useful and "0" if it was not useful.'''
|
755 |
+
|
756 |
+
precision_prompt = ChatPromptTemplate.from_messages([
|
757 |
+
("system", system_message),
|
758 |
+
("user", "Query: {query}\nResponse: {response}\n\nPrecision score:")
|
759 |
+
])
|
760 |
+
|
761 |
+
chain = precision_prompt | llm | StrOutputParser() # Complete the code to define the chain of processing
|
762 |
+
precision_score = float(chain.invoke({
|
763 |
+
"query": state['query'],
|
764 |
+
"response":state['response'] # Complete the code to access the response from the state
|
765 |
+
}))
|
766 |
+
state['precision_score'] = precision_score
|
767 |
+
print("precision_score:", precision_score)
|
768 |
+
state['precision_loop_count'] +=1
|
769 |
+
print("#########Precision Incremented###########")
|
770 |
+
return state
|
771 |
+
|
772 |
+
|
773 |
+
|
774 |
+
def refine_response(state: Dict) -> Dict:
|
775 |
+
"""
|
776 |
+
Suggests improvements for the generated response.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
state (Dict): The current state of the workflow, containing the query and response.
|
780 |
+
|
781 |
+
Returns:
|
782 |
+
Dict: The updated state with response refinement suggestions.
|
783 |
+
"""
|
784 |
+
print("---------refine_response---------")
|
785 |
+
|
786 |
+
system_message = '''Your task is to refine the AI generated response by improving the accuracy and completeness of the response based on the contexxt.'''
|
787 |
+
|
788 |
+
refine_response_prompt = ChatPromptTemplate.from_messages([
|
789 |
+
("system", system_message),
|
790 |
+
("user", "Query: {query}\nResponse: {response}\n\n"
|
791 |
+
"What improvements can be made to enhance accuracy and completeness?")
|
792 |
+
])
|
793 |
+
|
794 |
+
chain = refine_response_prompt | llm| StrOutputParser()
|
795 |
+
|
796 |
+
# Store response suggestions in a structured format
|
797 |
+
feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}"
|
798 |
+
print("feedback: ", feedback)
|
799 |
+
print(f"State: {state}")
|
800 |
+
state['feedback'] = feedback
|
801 |
+
return state
|
802 |
+
|
803 |
+
|
804 |
+
|
805 |
+
def refine_query(state: Dict) -> Dict:
|
806 |
+
"""
|
807 |
+
Suggests improvements for the expanded query.
|
808 |
+
|
809 |
+
Args:
|
810 |
+
state (Dict): The current state of the workflow, containing the query and expanded query.
|
811 |
+
|
812 |
+
Returns:
|
813 |
+
Dict: The updated state with query refinement suggestions.
|
814 |
+
"""
|
815 |
+
print("---------refine_query---------")
|
816 |
+
system_message = '''Your task is to refine the expanded query to improve the precision of the response.'''
|
817 |
+
|
818 |
+
refine_query_prompt = ChatPromptTemplate.from_messages([
|
819 |
+
("system", system_message),
|
820 |
+
("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n"
|
821 |
+
"What improvements can be made for a better search?")
|
822 |
+
])
|
823 |
+
|
824 |
+
chain = refine_query_prompt | llm | StrOutputParser()
|
825 |
+
|
826 |
+
# Store refinement suggestions without modifying the original expanded query
|
827 |
+
query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}"
|
828 |
+
print("query_feedback: ", query_feedback)
|
829 |
+
print(f"Groundedness loop count: {state['groundedness_loop_count']}")
|
830 |
+
state['query_feedback'] = query_feedback
|
831 |
+
return state
|
832 |
+
|
833 |
+
|
834 |
+
|
835 |
+
def should_continue_groundedness(state):
|
836 |
+
"""Decides if groundedness is sufficient or needs improvement."""
|
837 |
+
print("---------should_continue_groundedness---------")
|
838 |
+
print("groundedness loop count: ", state['groundedness_loop_count'])
|
839 |
+
if state['groundedness_score'] >= 1: # Complete the code to define the threshold for groundedness
|
840 |
+
print("Moving to precision")
|
841 |
+
return "check_precision"
|
842 |
+
else:
|
843 |
+
if state["groundedness_loop_count"] > state['loop_max_iter']:
|
844 |
+
return "max_iterations_reached"
|
845 |
+
else:
|
846 |
+
print(f"---------Groundedness Score Threshold Not met. Refining Response-----------")
|
847 |
+
return "refine_response"
|
848 |
+
|
849 |
+
|
850 |
+
def should_continue_precision(state: Dict) -> str:
|
851 |
+
"""Decides if precision is sufficient or needs improvement."""
|
852 |
+
print("---------should_continue_precision---------")
|
853 |
+
print("precision loop count: ", state['precision_loop_count'])
|
854 |
+
if state['precision_score']>=1: # Threshold for precision
|
855 |
+
return "pass" # Complete the workflow
|
856 |
+
else:
|
857 |
+
if state['precision_loop_count']> state['loop_max_iter']: # Maximum allowed loops
|
858 |
+
return "max_iterations_reached"
|
859 |
+
else:
|
860 |
+
print(f"---------Precision Score Threshold Not met. Refining Query-----------") # Debugging
|
861 |
+
return "refine_query" # Refine the query
|
862 |
+
|
863 |
+
|
864 |
+
|
865 |
+
|
866 |
+
def max_iterations_reached(state: Dict) -> Dict:
|
867 |
+
"""Handles the case when the maximum number of iterations is reached."""
|
868 |
+
print("---------max_iterations_reached---------")
|
869 |
+
"""Handles the case when the maximum number of iterations is reached."""
|
870 |
+
response = "I'm unable to refine the response further. Please provide more context or clarify your question."
|
871 |
+
state['response'] = response
|
872 |
+
return state
|
873 |
+
|
874 |
+
|
875 |
+
|
876 |
+
from langgraph.graph import END, StateGraph, START
|
877 |
+
|
878 |
+
def create_workflow() -> StateGraph:
|
879 |
+
"""Creates the updated workflow for the AI nutrition agent."""
|
880 |
+
workflow = StateGraph(AgentState)
|
881 |
+
|
882 |
+
# Add processing nodes
|
883 |
+
workflow.add_node("expand_query", expand_query) # Step 1: Expand user query.
|
884 |
+
workflow.add_node("retrieve_context", retrieve_context) # Step 2: Retrieve relevant documents.
|
885 |
+
workflow.add_node("craft_response", craft_response) # Step 3: Generate a response based on retrieved data.
|
886 |
+
workflow.add_node("score_groundedness", score_groundedness) # Step 4: Evaluate response grounding.
|
887 |
+
workflow.add_node("refine_response", refine_response) # Step 5: Improve response if it's weakly grounded.
|
888 |
+
workflow.add_node("check_precision", check_precision) # Step 6: Evaluate response precision.
|
889 |
+
workflow.add_node("refine_query",refine_query ) # Step 7: Improve query if response lacks precision. Complete with the function to refine the query
|
890 |
+
workflow.add_node("max_iterations_reached", max_iterations_reached) # Step 8: Handle max iterations.
|
891 |
+
|
892 |
+
# Main flow edges
|
893 |
+
workflow.add_edge(START, "expand_query")
|
894 |
+
workflow.add_edge("expand_query", "retrieve_context")
|
895 |
+
workflow.add_edge("retrieve_context", "craft_response")
|
896 |
+
workflow.add_edge("craft_response", "score_groundedness")
|
897 |
+
|
898 |
+
# Conditional edges based on groundedness check
|
899 |
+
workflow.add_conditional_edges(
|
900 |
+
"score_groundedness",
|
901 |
+
should_continue_groundedness, # Use the conditional function
|
902 |
+
{
|
903 |
+
"check_precision": "check_precision", # If well-grounded, proceed to precision check.
|
904 |
+
"refine_response": "refine_response", # If not, refine the response.
|
905 |
+
"max_iterations_reached": END # If max loops reached, exit.
|
906 |
+
}
|
907 |
+
)
|
908 |
+
|
909 |
+
workflow.add_edge("refine_response", "craft_response") # Refined responses are reprocessed.
|
910 |
+
|
911 |
+
# Conditional edges based on precision check
|
912 |
+
workflow.add_conditional_edges(
|
913 |
+
"check_precision",
|
914 |
+
should_continue_precision, # Use the conditional function
|
915 |
+
{
|
916 |
+
"pass": END, # If precise, complete the workflow.
|
917 |
+
"refine_query": "refine_query", # If imprecise, refine the query.
|
918 |
+
"max_iterations_reached": END # If max loops reached, exit.
|
919 |
+
}
|
920 |
+
)
|
921 |
+
|
922 |
+
workflow.add_edge("refine_query", "expand_query") # Refined queries go through expansion again.
|
923 |
+
workflow.add_edge("max_iterations_reached", END)
|
924 |
+
|
925 |
+
return workflow
|
926 |
+
|
927 |
+
|
928 |
+
|
929 |
+
|
930 |
+
#=========================== Defining the agentic rag tool ====================#
|
931 |
+
WORKFLOW_APP = create_workflow().compile()
|
932 |
+
|
933 |
+
@tool
|
934 |
+
def agentic_rag(query: str):
|
935 |
+
"""
|
936 |
+
Runs the RAG-based agent with conversation history for context-aware responses.
|
937 |
+
|
938 |
+
Args:
|
939 |
+
query (str): The current user query.
|
940 |
+
|
941 |
+
Returns:
|
942 |
+
Dict[str, Any]: The updated state with the generated response and conversation history.
|
943 |
+
"""
|
944 |
+
# Initialize state with necessary parameters
|
945 |
+
inputs = {
|
946 |
+
"query": query,
|
947 |
+
"expanded_query": "",
|
948 |
+
"context": [],
|
949 |
+
"response": "",
|
950 |
+
"precision_score": 0,
|
951 |
+
"groundedness_score":0,
|
952 |
+
"groundedness_loop_count": 5,
|
953 |
+
"precision_loop_count": 5,
|
954 |
+
"feedback": "",
|
955 |
+
"query_feedback": "",
|
956 |
+
"loop_max_iter": 5
|
957 |
+
}
|
958 |
+
|
959 |
+
output = WORKFLOW_APP.invoke(inputs)
|
960 |
+
|
961 |
+
return output
|
962 |
+
|
963 |
+
|
964 |
+
#================================ Guardrails ===========================#
|
965 |
+
llama_guard_client = Groq(api_key=llama_api_key)
|
966 |
+
# Function to filter user input with Llama Guard
|
967 |
+
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
|
968 |
+
"""
|
969 |
+
Filters user input using Llama Guard to ensure it is safe.
|
970 |
+
|
971 |
+
Parameters:
|
972 |
+
- user_input: The input provided by the user.
|
973 |
+
- model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b").
|
974 |
+
|
975 |
+
Returns:
|
976 |
+
- The filtered and safe input.
|
977 |
+
"""
|
978 |
+
try:
|
979 |
+
# Create a request to Llama Guard to filter the user input
|
980 |
+
response = llama_guard_client.chat.completions.create(
|
981 |
+
messages=[{"role": "user", "content": user_input}],
|
982 |
+
model=model,
|
983 |
+
)
|
984 |
+
# Return the filtered input
|
985 |
+
return response.choices[0].message.content.strip()
|
986 |
+
except Exception as e:
|
987 |
+
print(f"Error with Llama Guard: {e}")
|
988 |
+
return None
|
989 |
+
|
990 |
+
|
991 |
+
#============================= Adding Memory to the agent using mem0 ===============================#
|
992 |
+
|
993 |
+
class climateBot:
|
994 |
+
def __init__(self):
|
995 |
+
"""
|
996 |
+
Initialize the climateBot class, setting up memory, the LLM client, tools, and the agent executor.
|
997 |
+
"""
|
998 |
+
|
999 |
+
# Initialize a memory client to store and retrieve customer interactions
|
1000 |
+
#self.memory = MemoryClient(api_key=userdata.get("mem0_api_key")) # Complete the code to define the memory client API key
|
1001 |
+
self.memory = MemoryClient(api_key=mem0_api_key)
|
1002 |
+
# Initialize the OpenAI client using the provided credentials
|
1003 |
+
self.client = ChatOpenAI(
|
1004 |
+
model_name="gpt-4o-mini", # Specify the model to use (e.g., GPT-4 optimized version)
|
1005 |
+
api_key=os.environ["API_KEY"], # API key for authentication
|
1006 |
+
openai_api_base = os.environ["OPENAI_API_BASE"],
|
1007 |
+
temperature=0 # Controls randomness in responses; 0 ensures deterministic results
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
# Define tools available to the chatbot, such as web search
|
1011 |
+
tools = [agentic_rag]
|
1012 |
+
|
1013 |
+
# Define the system prompt to set the behavior of the chatbot
|
1014 |
+
system_prompt = """You are a caring and knowledgeable Climate Agent, specializing in climate change mitigation strategies and climate action recommendations. Your goal is to provide accurate, empathetic, and tailored nutritional recommendations while ensuring a seamless customer experience.
|
1015 |
+
Guidelines for Interaction:
|
1016 |
+
Maintain a polite, professional, and reassuring tone.
|
1017 |
+
Show genuine empathy for customer concerns and health challenges.
|
1018 |
+
Reference past interactions to provide personalized and consistent advice.
|
1019 |
+
Engage with the customer by asking about their location, top climate business priorities and company size before offering recommendations.
|
1020 |
+
Ensure consistent and accurate information across conversations.
|
1021 |
+
If any detail is unclear or missing, proactively ask for clarification.
|
1022 |
+
Always use the agentic_rag tool to retrieve up-to-date and evidence-based climate solution insights.
|
1023 |
+
Keep track of ongoing issues and follow-ups to ensure continuity in support.
|
1024 |
+
Your primary goal is to help customers make informed climate solution decisions that align with their specific circumstances and business preferences.
|
1025 |
+
|
1026 |
+
"""
|
1027 |
+
|
1028 |
+
# Build the prompt template for the agent
|
1029 |
+
prompt = ChatPromptTemplate.from_messages([
|
1030 |
+
("system", system_prompt), # System instructions
|
1031 |
+
("human", "{input}"), # Placeholder for human input
|
1032 |
+
("placeholder", "{agent_scratchpad}") # Placeholder for intermediate reasoning steps
|
1033 |
+
])
|
1034 |
+
|
1035 |
+
# Create an agent capable of interacting with tools and executing tasks
|
1036 |
+
agent = create_tool_calling_agent(self.client, tools, prompt)
|
1037 |
+
|
1038 |
+
# Wrap the agent in an executor to manage tool interactions and execution flow
|
1039 |
+
self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
1040 |
+
|
1041 |
+
|
1042 |
+
def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None):
|
1043 |
+
"""
|
1044 |
+
Store customer interaction in memory for future reference.
|
1045 |
+
|
1046 |
+
Args:
|
1047 |
+
user_id (str): Unique identifier for the customer.
|
1048 |
+
message (str): Customer's query or message.
|
1049 |
+
response (str): Chatbot's response.
|
1050 |
+
metadata (Dict, optional): Additional metadata for the interaction.
|
1051 |
+
"""
|
1052 |
+
if metadata is None:
|
1053 |
+
metadata = {}
|
1054 |
+
|
1055 |
+
# Add a timestamp to the metadata for tracking purposes
|
1056 |
+
metadata["timestamp"] = datetime.now().isoformat()
|
1057 |
+
|
1058 |
+
# Format the conversation for storage
|
1059 |
+
conversation = [
|
1060 |
+
{"role": "user", "content": message},
|
1061 |
+
{"role": "assistant", "content": response}
|
1062 |
+
]
|
1063 |
+
|
1064 |
+
# Store the interaction in the memory client
|
1065 |
+
self.memory.add(
|
1066 |
+
conversation,
|
1067 |
+
user_id=user_id,
|
1068 |
+
output_format="v1.1",
|
1069 |
+
metadata=metadata
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
|
1073 |
+
def get_relevant_history(self, user_id: str, query: str) -> List[Dict]:
|
1074 |
+
"""
|
1075 |
+
Retrieve past interactions relevant to the current query.
|
1076 |
+
|
1077 |
+
Args:
|
1078 |
+
user_id (str): Unique identifier for the customer.
|
1079 |
+
query (str): The customer's current query.
|
1080 |
+
|
1081 |
+
Returns:
|
1082 |
+
List[Dict]: A list of relevant past interactions.
|
1083 |
+
"""
|
1084 |
+
return self.memory.search(
|
1085 |
+
query=query, # Search for interactions related to the query
|
1086 |
+
user_id=user_id, # Restrict search to the specific user
|
1087 |
+
limit=5 # Complete the code to define the limit for retrieved interactions
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
|
1091 |
+
def handle_customer_query(self, user_id: str, query: str) -> str:
|
1092 |
+
"""
|
1093 |
+
Process a customer's query and provide a response, taking into account past interactions.
|
1094 |
+
|
1095 |
+
Args:
|
1096 |
+
user_id (str): Unique identifier for the customer.
|
1097 |
+
query (str): Customer's query.
|
1098 |
+
|
1099 |
+
Returns:
|
1100 |
+
str: Chatbot's response.
|
1101 |
+
"""
|
1102 |
+
|
1103 |
+
# Retrieve relevant past interactions for context
|
1104 |
+
relevant_history = self.get_relevant_history(user_id, query)
|
1105 |
+
|
1106 |
+
# Build a context string from the relevant history
|
1107 |
+
context = "Previous relevant interactions:\n"
|
1108 |
+
for memory in relevant_history:
|
1109 |
+
context += f"Customer: {memory['memory']}\n" # Customer's past messages
|
1110 |
+
context += f"Support: {memory['memory']}\n" # Chatbot's past responses
|
1111 |
+
context += "---\n"
|
1112 |
+
|
1113 |
+
# Print context for debugging purposes
|
1114 |
+
print("Context: ", context)
|
1115 |
+
|
1116 |
+
# Prepare a prompt combining past context and the current query
|
1117 |
+
prompt = f"""
|
1118 |
+
Context:
|
1119 |
+
{context}
|
1120 |
+
|
1121 |
+
Current customer query: {query}
|
1122 |
+
|
1123 |
+
Provide a helpful response that takes into account any relevant past interactions.
|
1124 |
+
"""
|
1125 |
+
|
1126 |
+
# Generate a response using the agent
|
1127 |
+
response = self.agent_executor.invoke({"input": prompt})
|
1128 |
+
|
1129 |
+
# Store the current interaction for future reference
|
1130 |
+
self.store_customer_interaction(
|
1131 |
+
user_id=user_id,
|
1132 |
+
message=query,
|
1133 |
+
response=response["output"],
|
1134 |
+
metadata={"type": "support_query"}
|
1135 |
+
)
|
1136 |
+
|
1137 |
+
# Return the chatbot's response
|
1138 |
+
return response['output']
|
1139 |
+
|
1140 |
+
|
1141 |
+
#=====================User Interface using streamlit ===========================#
|
1142 |
+
def climate_streamlit():
|
1143 |
+
"""
|
1144 |
+
A Streamlit-based UI for the Climate Agent.
|
1145 |
+
"""
|
1146 |
+
st.title("ClimateBot")
|
1147 |
+
st.write("Ask me anything about climate solutions and actions to help your business achieve net zero.")
|
1148 |
+
st.write("Type 'exit' to end the conversation.")
|
1149 |
+
|
1150 |
+
# Initialize session state for chat history and user_id if they don't exist
|
1151 |
+
if 'chat_history' not in st.session_state:
|
1152 |
+
st.session_state.chat_history = []
|
1153 |
+
if 'user_id' not in st.session_state:
|
1154 |
+
st.session_state.user_id = None
|
1155 |
+
|
1156 |
+
# Login form: Only if user is not logged in
|
1157 |
+
if st.session_state.user_id is None:
|
1158 |
+
with st.form("login_form", clear_on_submit=True):
|
1159 |
+
user_id = st.text_input("Please enter your name to begin:")
|
1160 |
+
submit_button = st.form_submit_button("Login")
|
1161 |
+
if submit_button and user_id:
|
1162 |
+
st.session_state.user_id = user_id
|
1163 |
+
st.session_state.chat_history.append({
|
1164 |
+
"role": "assistant",
|
1165 |
+
"content": f"Welcome, {user_id}! How can I help you climate action recommendations today?"
|
1166 |
+
})
|
1167 |
+
st.session_state.login_submitted = True # Set flag to trigger rerun
|
1168 |
+
if st.session_state.get("login_submitted", False):
|
1169 |
+
st.session_state.pop("login_submitted")
|
1170 |
+
st.rerun()
|
1171 |
+
else:
|
1172 |
+
# Display chat history
|
1173 |
+
for message in st.session_state.chat_history:
|
1174 |
+
with st.chat_message(message["role"]):
|
1175 |
+
st.write(message["content"])
|
1176 |
+
|
1177 |
+
# Chat input with custom placeholder text
|
1178 |
+
user_query = st.chat_input("Type your question here (or exit to end): ", key="chat_input") # Blank #1: Fill in the chat input prompt (e.g., "Type your question here (or 'exit' to end)...")
|
1179 |
+
if user_query:
|
1180 |
+
if user_query.lower() == "exit":
|
1181 |
+
st.session_state.chat_history.append({"role": "user", "content": "exit"})
|
1182 |
+
with st.chat_message("user"):
|
1183 |
+
st.write("exit")
|
1184 |
+
goodbye_msg = "Goodbye! Feel free to return if you have more questions about climate action recommendations."
|
1185 |
+
st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg})
|
1186 |
+
with st.chat_message("assistant"):
|
1187 |
+
st.write(goodbye_msg)
|
1188 |
+
st.session_state.user_id = None
|
1189 |
+
st.rerun()
|
1190 |
+
return
|
1191 |
+
|
1192 |
+
st.session_state.chat_history.append({"role": "user", "content": user_query})
|
1193 |
+
with st.chat_message("user"):
|
1194 |
+
st.write(user_query)
|
1195 |
+
|
1196 |
+
# Filter input using Llama Guard
|
1197 |
+
filtered_result = filter_input_with_llama_guard(user_query) # Blank #2: Fill in with the function name for filtering input (e.g., filter_input_with_llama_guard)
|
1198 |
+
filtered_result = filtered_result.replace("\n", " ") # Normalize the result
|
1199 |
+
|
1200 |
+
# Check if input is safe based on allowed statuses
|
1201 |
+
if filtered_result in ["safe", "unsafe S6", "unsafe S7"]: # Blanks #3, #4, #5: Fill in with allowed safe statuses (e.g., "safe", "unsafe S7", "unsafe S6")
|
1202 |
+
try:
|
1203 |
+
if 'chatbot' not in st.session_state:
|
1204 |
+
st.session_state.chatbot = climateBot() # Blank #6: Fill in with the chatbot class initialization (e.g., NutritionBot)
|
1205 |
+
response = st.session_state.chatbot.handle_customer_query(st.session_state.user_id, user_query)
|
1206 |
+
# Blank #7: Fill in with the method to handle queries (e.g., handle_customer_query)
|
1207 |
+
st.write(response)
|
1208 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
1209 |
+
except Exception as e:
|
1210 |
+
error_msg = f"Sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}"
|
1211 |
+
st.write(error_msg)
|
1212 |
+
st.session_state.chat_history.append({"role": "assistant", "content": error_msg})
|
1213 |
+
else:
|
1214 |
+
inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again."
|
1215 |
+
st.write(inappropriate_msg)
|
1216 |
+
st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg})
|
1217 |
+
|
1218 |
+
if __name__ == "__main__":
|
1219 |
+
climate_streamlit()
|
1220 |
+
|