Spaces:
Build error
Build error
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
from skimage.metrics import structural_similarity | |
import torch | |
from torch.autograd import Variable | |
from ..masked_lpips import dist_model | |
class PerceptualLoss(torch.nn.Module): | |
def __init__( | |
self, | |
model="net-lin", | |
net="alex", | |
vgg_blocks=[1, 2, 3, 4, 5], | |
colorspace="rgb", | |
spatial=False, | |
use_gpu=True, | |
gpu_ids=[0], | |
): # VGG using our perceptually-learned weights (LPIPS metric) | |
# def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss | |
super(PerceptualLoss, self).__init__() | |
print("Setting up Perceptual loss...") | |
self.use_gpu = use_gpu | |
self.spatial = spatial | |
self.gpu_ids = gpu_ids | |
self.model = dist_model.DistModel() | |
self.model.initialize( | |
model=model, | |
net=net, | |
vgg_blocks=vgg_blocks, | |
use_gpu=use_gpu, | |
colorspace=colorspace, | |
spatial=self.spatial, | |
gpu_ids=gpu_ids, | |
) | |
print("...[%s] initialized" % self.model.name()) | |
print("...Done") | |
def forward(self, pred, target, mask=None, normalize=False): | |
""" | |
Pred and target are Variables. | |
If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1] | |
If normalize is False, assumes the images are already between [-1,+1] | |
Inputs pred and target are Nx3xHxW | |
Output pytorch Variable N long | |
""" | |
if normalize: | |
target = 2 * target - 1 | |
pred = 2 * pred - 1 | |
return self.model.forward(target, pred, mask=mask) | |
def normalize_tensor(in_feat, eps=1e-10): | |
# takes care of masked tensors implicitly. | |
norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True)) | |
return in_feat / (norm_factor + eps) | |
def l2(p0, p1, range=255.0): | |
return 0.5 * np.mean((p0 / range - p1 / range) ** 2) | |
def psnr(p0, p1, peak=255.0): | |
return 10 * np.log10(peak ** 2 / np.mean((1.0 * p0 - 1.0 * p1) ** 2)) | |
def dssim(p0, p1, range=255.0): | |
return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2.0 | |
def rgb2lab(in_img, mean_cent=False): | |
from skimage import color | |
img_lab = color.rgb2lab(in_img) | |
if mean_cent: | |
img_lab[:, :, 0] = img_lab[:, :, 0] - 50 | |
return img_lab | |
def tensor2np(tensor_obj): | |
# change dimension of a tensor object into a numpy array | |
return tensor_obj[0].cpu().float().numpy().transpose((1, 2, 0)) | |
def np2tensor(np_obj): | |
# change dimenion of np array into tensor array | |
return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) | |
def tensor2tensorlab(image_tensor, to_norm=True, mc_only=False): | |
# image tensor to lab tensor | |
from skimage import color | |
img = tensor2im(image_tensor) | |
img_lab = color.rgb2lab(img) | |
if mc_only: | |
img_lab[:, :, 0] = img_lab[:, :, 0] - 50 | |
if to_norm and not mc_only: | |
img_lab[:, :, 0] = img_lab[:, :, 0] - 50 | |
img_lab = img_lab / 100.0 | |
return np2tensor(img_lab) | |
def tensorlab2tensor(lab_tensor, return_inbnd=False): | |
from skimage import color | |
import warnings | |
warnings.filterwarnings("ignore") | |
lab = tensor2np(lab_tensor) * 100.0 | |
lab[:, :, 0] = lab[:, :, 0] + 50 | |
rgb_back = 255.0 * np.clip(color.lab2rgb(lab.astype("float")), 0, 1) | |
if return_inbnd: | |
# convert back to lab, see if we match | |
lab_back = color.rgb2lab(rgb_back.astype("uint8")) | |
mask = 1.0 * np.isclose(lab_back, lab, atol=2.0) | |
mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis]) | |
return (im2tensor(rgb_back), mask) | |
else: | |
return im2tensor(rgb_back) | |
def rgb2lab(input): | |
from skimage import color | |
return color.rgb2lab(input / 255.0) | |
def tensor2im(image_tensor, imtype=np.uint8, cent=1.0, factor=255.0 / 2.0): | |
image_numpy = image_tensor[0].cpu().float().numpy() | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor | |
return image_numpy.astype(imtype) | |
def im2tensor(image, imtype=np.uint8, cent=1.0, factor=255.0 / 2.0): | |
return torch.Tensor( | |
(image / factor - cent)[:, :, :, np.newaxis].transpose((3, 2, 0, 1)) | |
) | |
def tensor2vec(vector_tensor): | |
return vector_tensor.data.cpu().numpy()[:, :, 0, 0] | |
def voc_ap(rec, prec, use_07_metric=False): | |
"""ap = voc_ap(rec, prec, [use_07_metric]) | |
Compute VOC AP given precision and recall. | |
If use_07_metric is true, uses the | |
VOC 07 11 point method (default:False). | |
""" | |
if use_07_metric: | |
# 11 point metric | |
ap = 0.0 | |
for t in np.arange(0.0, 1.1, 0.1): | |
if np.sum(rec >= t) == 0: | |
p = 0 | |
else: | |
p = np.max(prec[rec >= t]) | |
ap = ap + p / 11.0 | |
else: | |
# correct AP calculation | |
# first append sentinel values at the end | |
mrec = np.concatenate(([0.0], rec, [1.0])) | |
mpre = np.concatenate(([0.0], prec, [0.0])) | |
# compute the precision envelope | |
for i in range(mpre.size - 1, 0, -1): | |
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) | |
# to calculate area under PR curve, look for points | |
# where X axis (recall) changes value | |
i = np.where(mrec[1:] != mrec[:-1])[0] | |
# and sum (\Delta recall) * prec | |
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) | |
return ap | |
def tensor2im(image_tensor, imtype=np.uint8, cent=1.0, factor=255.0 / 2.0): | |
# def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.): | |
image_numpy = image_tensor[0].cpu().float().numpy() | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor | |
return image_numpy.astype(imtype) | |
def im2tensor(image, imtype=np.uint8, cent=1.0, factor=255.0 / 2.0): | |
# def im2tensor(image, imtype=np.uint8, cent=1., factor=1.): | |
return torch.Tensor( | |
(image / factor - cent)[:, :, :, np.newaxis].transpose((3, 2, 0, 1)) | |
) | |