Spaces:
Sleeping
Sleeping
Update app.py
#2
by
amirkhanbloch
- opened
app.py
CHANGED
|
@@ -6,49 +6,64 @@ from tensorflow.keras.models import load_model
|
|
| 6 |
from tensorflow.keras.preprocessing.image import img_to_array
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
-
#
|
| 10 |
model = load_model('plant_diseases.h5')
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
class_labels = [
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def preprocess_image(image, image_size=(224, 224)):
|
| 17 |
-
#
|
| 18 |
image = np.array(image.convert('L'))
|
| 19 |
-
#
|
| 20 |
image = cv2.resize(image, image_size)
|
| 21 |
-
|
| 22 |
-
# Redimensionner pour le modèle
|
| 23 |
image = img_to_array(image)
|
| 24 |
image /= 255.0
|
| 25 |
image = np.expand_dims(image, axis=0)
|
| 26 |
return image
|
| 27 |
|
|
|
|
| 28 |
st.title("Classification des Maladies des Plantes")
|
| 29 |
st.write("Téléchargez une image de plante pour la classification")
|
| 30 |
|
| 31 |
uploaded_file = st.file_uploader("Choisissez une image...", type=["jpg", "jpeg", "png"])
|
| 32 |
|
| 33 |
if uploaded_file is not None:
|
| 34 |
-
#
|
| 35 |
image = Image.open(uploaded_file)
|
| 36 |
st.image(image, caption='Image téléchargée', use_column_width=True)
|
| 37 |
-
|
| 38 |
st.write("Classification en cours...")
|
| 39 |
-
|
| 40 |
-
#
|
| 41 |
processed_image = preprocess_image(image)
|
| 42 |
-
|
| 43 |
-
#
|
| 44 |
predictions = model.predict(processed_image)
|
| 45 |
probabilities = predictions[0]
|
| 46 |
-
|
| 47 |
-
#
|
| 48 |
for i, label in enumerate(class_labels):
|
| 49 |
if probabilities[i] > 0:
|
| 50 |
st.write(f"{label}: {probabilities[i]:.2f}")
|
| 51 |
|
| 52 |
-
#
|
| 53 |
predicted_class = class_labels[np.argmax(probabilities)]
|
| 54 |
st.write(f"Classe prédite: {predicted_class}")
|
|
|
|
| 6 |
from tensorflow.keras.preprocessing.image import img_to_array
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
+
# Load the pre-trained model
|
| 10 |
model = load_model('plant_diseases.h5')
|
| 11 |
|
| 12 |
+
# Class labels (replace with your own classes)
|
| 13 |
+
class_labels = [
|
| 14 |
+
'Piment: Bacterial_spot',
|
| 15 |
+
'Piment: healthy',
|
| 16 |
+
'Pomme de terre: Early_blight',
|
| 17 |
+
'Pomme de terre: Late_blight',
|
| 18 |
+
'Pomme de terre: Healthy',
|
| 19 |
+
'Tomate: Bacterial Spot',
|
| 20 |
+
'Tomate: Early Blight',
|
| 21 |
+
'Tomate: Late Blight',
|
| 22 |
+
'Tomate: Leaf mold',
|
| 23 |
+
'Tomate: Septoria leaf spot',
|
| 24 |
+
'Tomate: Spider mites',
|
| 25 |
+
'Tomate: Spot',
|
| 26 |
+
'Tomate: Yellow Leaf Curl',
|
| 27 |
+
'Tomate: Virus Mosaïque',
|
| 28 |
+
'Tomate: Healthy'
|
| 29 |
+
]
|
| 30 |
|
| 31 |
def preprocess_image(image, image_size=(224, 224)):
|
| 32 |
+
# Convert image to grayscale
|
| 33 |
image = np.array(image.convert('L'))
|
| 34 |
+
# Resize image
|
| 35 |
image = cv2.resize(image, image_size)
|
| 36 |
+
# Prepare image for the model
|
|
|
|
| 37 |
image = img_to_array(image)
|
| 38 |
image /= 255.0
|
| 39 |
image = np.expand_dims(image, axis=0)
|
| 40 |
return image
|
| 41 |
|
| 42 |
+
# Streamlit app setup
|
| 43 |
st.title("Classification des Maladies des Plantes")
|
| 44 |
st.write("Téléchargez une image de plante pour la classification")
|
| 45 |
|
| 46 |
uploaded_file = st.file_uploader("Choisissez une image...", type=["jpg", "jpeg", "png"])
|
| 47 |
|
| 48 |
if uploaded_file is not None:
|
| 49 |
+
# Display the uploaded image
|
| 50 |
image = Image.open(uploaded_file)
|
| 51 |
st.image(image, caption='Image téléchargée', use_column_width=True)
|
| 52 |
+
|
| 53 |
st.write("Classification en cours...")
|
| 54 |
+
|
| 55 |
+
# Preprocess the image
|
| 56 |
processed_image = preprocess_image(image)
|
| 57 |
+
|
| 58 |
+
# Make predictions
|
| 59 |
predictions = model.predict(processed_image)
|
| 60 |
probabilities = predictions[0]
|
| 61 |
+
|
| 62 |
+
# Display probabilities for each class
|
| 63 |
for i, label in enumerate(class_labels):
|
| 64 |
if probabilities[i] > 0:
|
| 65 |
st.write(f"{label}: {probabilities[i]:.2f}")
|
| 66 |
|
| 67 |
+
# Show predicted class
|
| 68 |
predicted_class = class_labels[np.argmax(probabilities)]
|
| 69 |
st.write(f"Classe prédite: {predicted_class}")
|