import gradio as gr from transformers import AutoTokenizer, AutoModel import torch model_name = "Qwen/Qwen-Embedding-0.6B" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained(model_name, trust_remote_code=True) def get_embedding(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().tolist() return embeddings demo = gr.Interface(fn=get_embedding, inputs=gr.Textbox(lines=2, placeholder="Enter text..."), outputs="json", title="Qwen Embedding Generator") demo.launch()