Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load public model
|
6 |
+
model_name = "intfloat/multilingual-e5-small"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModel.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Inference function
|
11 |
+
def get_embedding(text):
|
12 |
+
# E5 models expect: "query: your text here"
|
13 |
+
encoded_input = tokenizer("query: " + text, return_tensors='pt')
|
14 |
+
with torch.no_grad():
|
15 |
+
model_output = model(**encoded_input)
|
16 |
+
|
17 |
+
embeddings = model_output.last_hidden_state[:, 0] # CLS token
|
18 |
+
normed = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
19 |
+
return normed[0].tolist() # return list
|
20 |
+
|
21 |
+
# Gradio UI
|
22 |
+
iface = gr.Interface(fn=get_embedding,
|
23 |
+
inputs=gr.Textbox(label="Enter text"),
|
24 |
+
outputs=gr.Textbox(label="Embedding"),
|
25 |
+
title="Text Embedder")
|
26 |
+
|
27 |
+
iface.launch()
|