Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,613 +1,426 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
print('=' * 70)
|
| 9 |
-
print('Loading core Godzilla Piano Transformer modules...')
|
| 10 |
|
| 11 |
import os
|
| 12 |
-
|
| 13 |
import time as reqtime
|
| 14 |
import datetime
|
| 15 |
from pytz import timezone
|
| 16 |
|
| 17 |
-
print('=' * 70)
|
| 18 |
-
print('Loading main Godzilla Piano Transformer modules...')
|
| 19 |
-
|
| 20 |
-
os.environ['USE_FLASH_ATTENTION'] = '1'
|
| 21 |
-
|
| 22 |
import torch
|
| 23 |
-
|
| 24 |
-
torch.set_float32_matmul_precision('high')
|
| 25 |
-
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
| 26 |
-
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
| 27 |
-
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
| 28 |
-
torch.backends.cuda.enable_math_sdp(True)
|
| 29 |
-
torch.backends.cuda.enable_flash_sdp(True)
|
| 30 |
-
torch.backends.cuda.enable_cudnn_sdp(True)
|
| 31 |
-
|
| 32 |
-
from huggingface_hub import hf_hub_download
|
| 33 |
-
|
| 34 |
-
import TMIDIX
|
| 35 |
-
|
| 36 |
-
from midi_to_colab_audio import midi_to_colab_audio
|
| 37 |
-
|
| 38 |
-
from x_transformer_2_3_1 import *
|
| 39 |
-
|
| 40 |
-
import random
|
| 41 |
-
|
| 42 |
-
print('=' * 70)
|
| 43 |
-
print('Loading aux Godzilla Piano Transformer modules...')
|
| 44 |
-
|
| 45 |
import matplotlib.pyplot as plt
|
| 46 |
-
|
| 47 |
import gradio as gr
|
| 48 |
import spaces
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
print('Enjoy! :)')
|
| 55 |
-
print('=' * 70)
|
| 56 |
-
|
| 57 |
-
#==================================================================================
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
|
|
|
|
| 63 |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
|
| 64 |
-
|
| 65 |
NUM_OUT_BATCHES = 12
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
device_type = 'cuda'
|
| 75 |
dtype = 'bfloat16'
|
| 76 |
-
|
| 77 |
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 78 |
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 79 |
|
| 80 |
SEQ_LEN = 4096
|
| 81 |
-
|
| 82 |
PAD_IDX = 384
|
| 83 |
|
| 84 |
model = TransformerWrapper(
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
)
|
| 94 |
-
|
| 95 |
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
| 96 |
|
| 97 |
-
|
| 98 |
-
print(
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
model.load_state_dict(torch.load(
|
| 104 |
-
|
| 105 |
model = torch.compile(model, mode='max-autotune')
|
| 106 |
-
|
| 107 |
-
print(
|
| 108 |
-
print(
|
| 109 |
-
|
| 110 |
-
print('Model will use', dtype, 'precision...')
|
| 111 |
-
print('=' * 70)
|
| 112 |
|
| 113 |
model.cuda()
|
| 114 |
model.eval()
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes)
|
| 131 |
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
|
| 132 |
-
|
| 133 |
zscore = TMIDIX.augment_enhanced_score_notes(zscore, timings_divider=32)
|
| 134 |
-
|
| 135 |
fscore = TMIDIX.fix_escore_notes_durations(zscore)
|
| 136 |
-
|
| 137 |
cscore = TMIDIX.chordify_score([1000, fscore])
|
| 138 |
|
| 139 |
score = []
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
else:
|
| 151 |
-
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256])
|
| 152 |
-
|
| 153 |
-
pc = c
|
| 154 |
-
|
| 155 |
return score
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
time = 0
|
| 165 |
-
dur = 0
|
| 166 |
-
vel = 90
|
| 167 |
pitch = 0
|
| 168 |
-
channel = 0
|
| 169 |
-
patch = 0
|
| 170 |
-
|
| 171 |
patches = [0] * 16
|
| 172 |
|
| 173 |
-
for
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
elif
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
elif 384 < m < 512:
|
| 188 |
-
vel = (m-384)
|
| 189 |
-
|
| 190 |
-
if model_selector == 'with velocity - 3 epochs':
|
| 191 |
-
song_f.append(['note', time, dur, 0, pitch, vel, 0])
|
| 192 |
-
|
| 193 |
-
if batch_number == None:
|
| 194 |
-
fname = 'Godzilla-Piano-Transformer-Music-Composition'
|
| 195 |
-
|
| 196 |
else:
|
| 197 |
-
fname =
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
return
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
| 211 |
@spaces.GPU
|
| 212 |
-
def generate_music(prime,
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
# model_sampling_top_p,
|
| 218 |
-
model_state
|
| 219 |
-
):
|
| 220 |
-
|
| 221 |
-
if not prime:
|
| 222 |
-
inputs = [0]
|
| 223 |
-
|
| 224 |
-
else:
|
| 225 |
-
inputs = prime[-num_mem_tokens:]
|
| 226 |
-
|
| 227 |
-
print('Generating...')
|
| 228 |
-
|
| 229 |
-
inp = [inputs] * num_gen_batches
|
| 230 |
-
|
| 231 |
-
inp = torch.LongTensor(inp).cuda()
|
| 232 |
-
|
| 233 |
with ctx:
|
| 234 |
-
out = model.generate(
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
model_temperature,
|
| 256 |
-
# model_sampling_top_p,
|
| 257 |
-
final_composition,
|
| 258 |
-
generated_batches,
|
| 259 |
-
block_lines,
|
| 260 |
-
model_state
|
| 261 |
-
):
|
| 262 |
-
|
| 263 |
-
generated_batches = []
|
| 264 |
-
|
| 265 |
if not final_composition and input_midi is not None:
|
| 266 |
-
final_composition = load_midi(input_midi
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
# Save MIDI to a temporary file
|
| 289 |
-
midi_score = save_midi(tokens_preview + tokens, i, model_selector=model_state[2])
|
| 290 |
-
|
| 291 |
-
# MIDI plot
|
| 292 |
-
|
| 293 |
if len(final_composition) > PREVIEW_LENGTH:
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
# model_sampling_top_p,
|
| 328 |
-
final_composition,
|
| 329 |
-
generated_batches,
|
| 330 |
-
block_lines,
|
| 331 |
-
model_selector,
|
| 332 |
-
model_state
|
| 333 |
-
):
|
| 334 |
-
|
| 335 |
-
print('=' * 70)
|
| 336 |
-
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
| 337 |
-
start_time = reqtime.time()
|
| 338 |
-
|
| 339 |
-
print('=' * 70)
|
| 340 |
-
if input_midi is not None:
|
| 341 |
-
fn = os.path.basename(input_midi.name)
|
| 342 |
-
fn1 = fn.split('.')[0]
|
| 343 |
-
print('Input file name:', fn)
|
| 344 |
-
|
| 345 |
-
print('Selected model type:', model_selector)
|
| 346 |
-
|
| 347 |
-
if not model_state:
|
| 348 |
-
model_state = load_model(model_selector)
|
| 349 |
-
model_state.append(model_selector)
|
| 350 |
-
|
| 351 |
-
else:
|
| 352 |
-
if model_selector != model_state[2]:
|
| 353 |
-
print('=' * 70)
|
| 354 |
-
print('Switching model...')
|
| 355 |
-
model_state = load_model(model_selector)
|
| 356 |
-
model_state.append(model_selector)
|
| 357 |
-
print('=' * 70)
|
| 358 |
-
|
| 359 |
-
print('Num prime tokens:', num_prime_tokens)
|
| 360 |
-
print('Num gen tokens:', num_gen_tokens)
|
| 361 |
-
print('Num mem tokens:', num_mem_tokens)
|
| 362 |
-
|
| 363 |
-
print('Model temp:', model_temperature)
|
| 364 |
-
# print('Model top_p:', model_sampling_top_p)
|
| 365 |
-
print('=' * 70)
|
| 366 |
-
|
| 367 |
-
result = generate_callback(input_midi,
|
| 368 |
-
num_prime_tokens,
|
| 369 |
-
num_gen_tokens,
|
| 370 |
-
num_mem_tokens,
|
| 371 |
-
model_temperature,
|
| 372 |
-
# model_sampling_top_p,
|
| 373 |
-
final_composition,
|
| 374 |
-
generated_batches,
|
| 375 |
-
block_lines,
|
| 376 |
-
model_state
|
| 377 |
-
)
|
| 378 |
-
|
| 379 |
-
generated_batches = [sublist[-1] for sublist in result[0]]
|
| 380 |
-
|
| 381 |
-
print('=' * 70)
|
| 382 |
-
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
| 383 |
-
print('=' * 70)
|
| 384 |
-
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
| 385 |
-
print('*' * 70)
|
| 386 |
-
|
| 387 |
-
return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]] + [model_state])
|
| 388 |
-
|
| 389 |
-
#==================================================================================
|
| 390 |
-
|
| 391 |
-
def add_batch(batch_number, final_composition, generated_batches, block_lines, model_state=[]):
|
| 392 |
-
|
| 393 |
if generated_batches:
|
| 394 |
final_composition.extend(generated_batches[batch_number])
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
midi_score =
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
midi_audio = midi_to_colab_audio(
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
print('=' * 70)
|
| 419 |
-
|
| 420 |
-
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines
|
| 421 |
-
|
| 422 |
else:
|
| 423 |
return None, None, None, [], [], []
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
if len(final_composition) > num_tokens:
|
| 432 |
-
final_composition = final_composition[:-num_tokens]
|
| 433 |
block_lines.pop()
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines
|
| 458 |
-
|
| 459 |
else:
|
| 460 |
return None, None, None, [], [], []
|
| 461 |
-
|
| 462 |
-
def clear():
|
| 463 |
-
return None, None, None, [], []
|
| 464 |
-
|
| 465 |
-
#==================================================================================
|
| 466 |
|
| 467 |
-
def
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
generated_batches = []
|
| 471 |
-
block_lines = []
|
| 472 |
-
model_state = []
|
| 473 |
-
|
| 474 |
-
return final_composition, generated_batches, block_lines
|
| 475 |
-
|
| 476 |
-
#==================================================================================
|
| 477 |
-
|
| 478 |
-
def reset_demo(final_composition=[], generated_batches=[], block_lines=[], model_state=[]):
|
| 479 |
-
|
| 480 |
-
final_composition = []
|
| 481 |
-
generated_batches = []
|
| 482 |
-
block_lines = []
|
| 483 |
-
model_state = []
|
| 484 |
-
|
| 485 |
-
#==================================================================================
|
| 486 |
-
|
| 487 |
-
PDT = timezone('US/Pacific')
|
| 488 |
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
|
| 493 |
-
|
|
|
|
|
|
|
| 494 |
|
|
|
|
|
|
|
|
|
|
| 495 |
with gr.Blocks() as demo:
|
| 496 |
-
|
| 497 |
-
#==================================================================================
|
| 498 |
-
|
| 499 |
demo.load(reset_demo)
|
| 500 |
|
| 501 |
-
#==================================================================================
|
| 502 |
-
|
| 503 |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Godzilla Piano Transformer</h1>")
|
| 504 |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples)</h1>")
|
| 505 |
gr.HTML("""
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
<
|
| 509 |
-
<
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
#==================================================================================
|
| 518 |
-
|
| 519 |
final_composition = gr.State([])
|
| 520 |
generated_batches = gr.State([])
|
| 521 |
block_lines = gr.State([])
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
#==================================================================================
|
| 525 |
-
|
| 526 |
-
gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output")
|
| 527 |
-
|
| 528 |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
| 529 |
-
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
gr.Markdown("## Generate")
|
| 533 |
|
| 534 |
-
|
| 535 |
-
label="Select model",
|
| 536 |
-
)
|
| 537 |
-
|
| 538 |
num_prime_tokens = gr.Slider(15, 3072, value=3072, step=1, label="Number of prime tokens")
|
| 539 |
num_gen_tokens = gr.Slider(15, 1024, value=512, step=1, label="Number of tokens to generate")
|
| 540 |
num_mem_tokens = gr.Slider(15, 4096, value=4096, step=1, label="Number of memory tokens")
|
| 541 |
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
|
| 542 |
-
# model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
|
| 543 |
-
|
| 544 |
generate_btn = gr.Button("Generate", variant="primary")
|
| 545 |
|
| 546 |
-
gr.Markdown("##
|
| 547 |
-
|
| 548 |
outputs = [final_composition, generated_batches, block_lines]
|
| 549 |
-
|
| 550 |
for i in range(NUM_OUT_BATCHES):
|
| 551 |
-
with gr.Tab(f"Batch # {i}")
|
| 552 |
-
|
| 553 |
-
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio")
|
| 554 |
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
|
| 555 |
-
|
| 556 |
outputs.extend([audio_output, plot_output])
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
# model_sampling_top_p,
|
| 567 |
-
final_composition,
|
| 568 |
-
generated_batches,
|
| 569 |
-
block_lines,
|
| 570 |
-
model_selector,
|
| 571 |
-
model_state
|
| 572 |
-
],
|
| 573 |
-
outputs
|
| 574 |
-
)
|
| 575 |
-
|
| 576 |
-
gr.Markdown("## Add/Remove batch")
|
| 577 |
-
|
| 578 |
-
batch_number = gr.Slider(0, NUM_OUT_BATCHES-1, value=0, step=1, label="Batch number to add/remove")
|
| 579 |
-
|
| 580 |
add_btn = gr.Button("Add batch", variant="primary")
|
| 581 |
remove_btn = gr.Button("Remove batch", variant="stop")
|
| 582 |
clear_btn = gr.ClearButton()
|
| 583 |
-
|
| 584 |
-
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3"
|
| 585 |
final_plot_output = gr.Plot(label="Final MIDI plot")
|
| 586 |
final_file_output = gr.File(label="Final MIDI file")
|
| 587 |
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
clear_btn.click(clear,
|
| 601 |
-
inputs=None,
|
| 602 |
-
outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines]
|
| 603 |
-
)
|
| 604 |
-
|
| 605 |
-
#==================================================================================
|
| 606 |
|
| 607 |
demo.unload(reset_demo)
|
| 608 |
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
demo.launch()
|
| 612 |
-
|
| 613 |
-
#==================================================================================
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
"""
|
| 3 |
+
Godzilla Piano Transformer Gradio App - Single Model, Simplified Version
|
| 4 |
+
Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples)
|
| 5 |
+
Using only one model: "without velocity - 3 epochs"
|
| 6 |
+
"""
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import os
|
|
|
|
| 9 |
import time as reqtime
|
| 10 |
import datetime
|
| 11 |
from pytz import timezone
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import matplotlib.pyplot as plt
|
|
|
|
| 15 |
import gradio as gr
|
| 16 |
import spaces
|
| 17 |
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
import TMIDIX
|
| 20 |
+
from midi_to_colab_audio import midi_to_colab_audio
|
| 21 |
+
from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# -----------------------------
|
| 24 |
+
# CONFIGURATION & GLOBALS
|
| 25 |
+
# -----------------------------
|
| 26 |
+
SEP = '=' * 70
|
| 27 |
+
PDT = timezone('US/Pacific')
|
| 28 |
|
| 29 |
+
MODEL_CHECKPOINT = 'Godzilla_Piano_Transformer_No_Velocity_Trained_Model_14075_steps_0.4534_loss_0.8687_acc.pth'
|
| 30 |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
|
|
|
|
| 31 |
NUM_OUT_BATCHES = 12
|
| 32 |
+
PREVIEW_LENGTH = 120 # in tokens
|
| 33 |
+
|
| 34 |
+
# -----------------------------
|
| 35 |
+
# PRINT START-UP INFO
|
| 36 |
+
# -----------------------------
|
| 37 |
+
def print_sep():
|
| 38 |
+
print(SEP)
|
| 39 |
+
|
| 40 |
+
print_sep()
|
| 41 |
+
print("Godzilla Piano Transformer Gradio App")
|
| 42 |
+
print_sep()
|
| 43 |
+
print("Loading modules...")
|
| 44 |
+
|
| 45 |
+
# -----------------------------
|
| 46 |
+
# ENVIRONMENT & PyTorch Settings
|
| 47 |
+
# -----------------------------
|
| 48 |
+
os.environ['USE_FLASH_ATTENTION'] = '1'
|
| 49 |
|
| 50 |
+
torch.set_float32_matmul_precision('high')
|
| 51 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 52 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 53 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
| 54 |
+
torch.backends.cuda.enable_math_sdp(True)
|
| 55 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
| 56 |
+
torch.backends.cuda.enable_cudnn_sdp(True)
|
| 57 |
|
| 58 |
+
print_sep()
|
| 59 |
+
print("PyTorch version:", torch.__version__)
|
| 60 |
+
print("Done loading modules!")
|
| 61 |
+
print_sep()
|
| 62 |
|
| 63 |
+
# -----------------------------
|
| 64 |
+
# MODEL INITIALIZATION
|
| 65 |
+
# -----------------------------
|
| 66 |
+
print_sep()
|
| 67 |
+
print("Instantiating model...")
|
| 68 |
|
| 69 |
device_type = 'cuda'
|
| 70 |
dtype = 'bfloat16'
|
|
|
|
| 71 |
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 72 |
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 73 |
|
| 74 |
SEQ_LEN = 4096
|
|
|
|
| 75 |
PAD_IDX = 384
|
| 76 |
|
| 77 |
model = TransformerWrapper(
|
| 78 |
+
num_tokens=PAD_IDX + 1,
|
| 79 |
+
max_seq_len=SEQ_LEN,
|
| 80 |
+
attn_layers=Decoder(
|
| 81 |
+
dim=2048,
|
| 82 |
+
depth=16,
|
| 83 |
+
heads=32,
|
| 84 |
+
rotary_pos_emb=True,
|
| 85 |
+
attn_flash=True
|
| 86 |
+
)
|
| 87 |
)
|
|
|
|
| 88 |
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
| 89 |
|
| 90 |
+
print_sep()
|
| 91 |
+
print("Loading model checkpoint...")
|
| 92 |
+
checkpoint = hf_hub_download(
|
| 93 |
+
repo_id='asigalov61/Godzilla-Piano-Transformer',
|
| 94 |
+
filename=MODEL_CHECKPOINT
|
| 95 |
+
)
|
| 96 |
+
model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True))
|
|
|
|
| 97 |
model = torch.compile(model, mode='max-autotune')
|
| 98 |
+
print_sep()
|
| 99 |
+
print("Done!")
|
| 100 |
+
print("Model will use", dtype, "precision...")
|
| 101 |
+
print_sep()
|
|
|
|
|
|
|
| 102 |
|
| 103 |
model.cuda()
|
| 104 |
model.eval()
|
| 105 |
|
| 106 |
+
# -----------------------------
|
| 107 |
+
# HELPER FUNCTIONS
|
| 108 |
+
# -----------------------------
|
| 109 |
+
def render_midi_output(final_composition):
|
| 110 |
+
"""Generate MIDI score, plot, and audio from final composition."""
|
| 111 |
+
midi_score = save_midi(final_composition)
|
| 112 |
+
time_val = midi_score[-1][1] / 1000 # seconds marker from last note
|
| 113 |
+
midi_plot = TMIDIX.plot_ms_SONG(
|
| 114 |
+
midi_score,
|
| 115 |
+
plot_title='Godzilla Piano Transformer Composition',
|
| 116 |
+
block_lines_times_list=[],
|
| 117 |
+
return_plt=True
|
| 118 |
+
)
|
| 119 |
+
fname = save_midi(final_composition) # The file name is embedded in the saved MIDI.
|
| 120 |
+
midi_audio = midi_to_colab_audio(
|
| 121 |
+
fname + '.mid',
|
| 122 |
+
soundfont_path=SOUDFONT_PATH,
|
| 123 |
+
sample_rate=16000,
|
| 124 |
+
output_for_gradio=True
|
| 125 |
+
)
|
| 126 |
+
return (16000, midi_audio), midi_plot, fname + '.mid', time_val
|
| 127 |
+
|
| 128 |
+
# -----------------------------
|
| 129 |
+
# MIDI PROCESSING FUNCTIONS
|
| 130 |
+
# -----------------------------
|
| 131 |
+
def load_midi(input_midi):
|
| 132 |
+
"""Process the input MIDI file and create a token sequence using without velocity logic."""
|
| 133 |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
| 134 |
+
escore_notes = TMIDIX.advanced_score_processor(
|
| 135 |
+
raw_score, return_enhanced_score_notes=True, apply_sustain=True
|
| 136 |
+
)[0]
|
| 137 |
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes)
|
| 138 |
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
|
|
|
|
| 139 |
zscore = TMIDIX.augment_enhanced_score_notes(zscore, timings_divider=32)
|
|
|
|
| 140 |
fscore = TMIDIX.fix_escore_notes_durations(zscore)
|
|
|
|
| 141 |
cscore = TMIDIX.chordify_score([1000, fscore])
|
| 142 |
|
| 143 |
score = []
|
| 144 |
+
prev_chord = cscore[0]
|
| 145 |
+
for chord in cscore:
|
| 146 |
+
# Time difference token.
|
| 147 |
+
score.append(max(0, min(127, chord[0][1] - prev_chord[0][1])))
|
| 148 |
+
for note in chord:
|
| 149 |
+
score.extend([
|
| 150 |
+
max(1, min(127, note[2])) + 128,
|
| 151 |
+
max(1, min(127, note[4])) + 256
|
| 152 |
+
])
|
| 153 |
+
prev_chord = chord
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
return score
|
| 155 |
|
| 156 |
+
def save_midi(tokens, batch_number=None):
|
| 157 |
+
"""Convert token sequence back to a MIDI score and write it using TMIDIX (without velocity).
|
| 158 |
+
The output MIDI file name incorporates a date-time stamp.
|
| 159 |
+
"""
|
| 160 |
+
song_events = []
|
| 161 |
+
time_marker = 0
|
| 162 |
+
duration = 0
|
|
|
|
|
|
|
|
|
|
| 163 |
pitch = 0
|
|
|
|
|
|
|
|
|
|
| 164 |
patches = [0] * 16
|
| 165 |
|
| 166 |
+
for token in tokens:
|
| 167 |
+
if 0 <= token < 128:
|
| 168 |
+
time_marker += token * 32
|
| 169 |
+
elif 128 <= token < 256:
|
| 170 |
+
duration = (token - 128) * 32
|
| 171 |
+
elif 256 <= token < 384:
|
| 172 |
+
pitch = token - 256
|
| 173 |
+
song_events.append(['note', time_marker, duration, 0, pitch, max(40, pitch), 0])
|
| 174 |
+
# No velocity tokens are used.
|
| 175 |
+
|
| 176 |
+
# Generate a time stamp using the PDT timezone.
|
| 177 |
+
timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S")
|
| 178 |
+
if batch_number is None:
|
| 179 |
+
fname = f"Godzilla-Piano-Transformer-Music-Composition_{timestamp}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
else:
|
| 181 |
+
fname = f"Godzilla-Piano-Transformer-Music-Composition_{timestamp}_Batch_{batch_number}"
|
| 182 |
+
|
| 183 |
+
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
| 184 |
+
song_events,
|
| 185 |
+
output_signature='Godzilla Piano Transformer',
|
| 186 |
+
output_file_name=fname,
|
| 187 |
+
track_name='Project Los Angeles',
|
| 188 |
+
list_of_MIDI_patches=patches,
|
| 189 |
+
verbose=False
|
| 190 |
+
)
|
| 191 |
+
return fname
|
| 192 |
+
|
| 193 |
+
# -----------------------------
|
| 194 |
+
# MUSIC GENERATION FUNCTION (Combined)
|
| 195 |
+
# -----------------------------
|
| 196 |
@spaces.GPU
|
| 197 |
+
def generate_music(prime, num_gen_tokens, num_mem_tokens, num_gen_batches, model_temperature):
|
| 198 |
+
"""Generate music tokens given prime tokens and parameters."""
|
| 199 |
+
inputs = prime[-num_mem_tokens:] if prime else [0]
|
| 200 |
+
print("Generating...")
|
| 201 |
+
inp = torch.LongTensor([inputs] * num_gen_batches).cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
with ctx:
|
| 203 |
+
out = model.generate(
|
| 204 |
+
inp,
|
| 205 |
+
num_gen_tokens,
|
| 206 |
+
temperature=model_temperature,
|
| 207 |
+
return_prime=False,
|
| 208 |
+
verbose=False
|
| 209 |
+
)
|
| 210 |
+
print("Done!")
|
| 211 |
+
print_sep()
|
| 212 |
+
return out.tolist()
|
| 213 |
+
|
| 214 |
+
def generate_music_and_state(input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens,
|
| 215 |
+
model_temperature, final_composition, generated_batches, block_lines):
|
| 216 |
+
"""
|
| 217 |
+
Generate tokens using the model, update the composition state, and prepare outputs.
|
| 218 |
+
This function combines seed loading, token generation, and UI output packaging.
|
| 219 |
+
"""
|
| 220 |
+
print_sep()
|
| 221 |
+
print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S"))
|
| 222 |
+
|
| 223 |
+
# Load seed from MIDI if there is no existing composition.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
if not final_composition and input_midi is not None:
|
| 225 |
+
final_composition = load_midi(input_midi)[:num_prime_tokens]
|
| 226 |
+
midi_fname = save_midi(final_composition)
|
| 227 |
+
# Use the last note's time as a marker.
|
| 228 |
+
midi_score = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
| 229 |
+
final_composition,
|
| 230 |
+
output_signature='Godzilla Piano Transformer',
|
| 231 |
+
output_file_name=midi_fname,
|
| 232 |
+
track_name='Project Los Angeles',
|
| 233 |
+
list_of_MIDI_patches=[0]*16,
|
| 234 |
+
verbose=False
|
| 235 |
+
)
|
| 236 |
+
block_lines.append(final_composition[-1] if final_composition else 0)
|
| 237 |
+
|
| 238 |
+
batched_gen_tokens = generate_music(final_composition, num_gen_tokens, num_mem_tokens,
|
| 239 |
+
NUM_OUT_BATCHES, model_temperature)
|
| 240 |
+
|
| 241 |
+
output_batches = []
|
| 242 |
+
for i, tokens in enumerate(batched_gen_tokens):
|
| 243 |
+
preview_tokens = final_composition[-PREVIEW_LENGTH:]
|
| 244 |
+
midi_fname = save_midi(preview_tokens + tokens, batch_number=i)
|
| 245 |
+
plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
if len(final_composition) > PREVIEW_LENGTH:
|
| 247 |
+
plot_kwargs['preview_length_in_notes'] = int(PREVIEW_LENGTH / 3)
|
| 248 |
+
midi_score = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
| 249 |
+
preview_tokens + tokens,
|
| 250 |
+
output_signature='Godzilla Piano Transformer',
|
| 251 |
+
output_file_name=midi_fname,
|
| 252 |
+
track_name='Project Los Angeles',
|
| 253 |
+
list_of_MIDI_patches=[0]*16,
|
| 254 |
+
verbose=False
|
| 255 |
+
)
|
| 256 |
+
midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs)
|
| 257 |
+
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
|
| 258 |
+
soundfont_path=SOUDFONT_PATH,
|
| 259 |
+
sample_rate=16000,
|
| 260 |
+
output_for_gradio=True)
|
| 261 |
+
output_batches.append([(16000, midi_audio), midi_plot, tokens])
|
| 262 |
+
|
| 263 |
+
# Update generated_batches (for use by add/remove functions)
|
| 264 |
+
generated_batches = batched_gen_tokens
|
| 265 |
+
|
| 266 |
+
print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S"))
|
| 267 |
+
print_sep()
|
| 268 |
+
|
| 269 |
+
# Flatten outputs: states then audio and plots for each batch.
|
| 270 |
+
outputs_flat = []
|
| 271 |
+
for batch in output_batches:
|
| 272 |
+
outputs_flat.extend([batch[0], batch[1]])
|
| 273 |
+
return [final_composition, generated_batches, block_lines] + outputs_flat
|
| 274 |
+
|
| 275 |
+
# -----------------------------
|
| 276 |
+
# BATCH HANDLING FUNCTIONS
|
| 277 |
+
# -----------------------------
|
| 278 |
+
def add_batch(batch_number, final_composition, generated_batches, block_lines):
|
| 279 |
+
"""Add tokens from the specified batch to the final composition and update outputs."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
if generated_batches:
|
| 281 |
final_composition.extend(generated_batches[batch_number])
|
| 282 |
+
midi_fname = save_midi(final_composition)
|
| 283 |
+
block_lines.append(final_composition[-1] if final_composition else 0)
|
| 284 |
+
midi_score = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
| 285 |
+
final_composition,
|
| 286 |
+
output_signature='Godzilla Piano Transformer',
|
| 287 |
+
output_file_name=midi_fname,
|
| 288 |
+
track_name='Project Los Angeles',
|
| 289 |
+
list_of_MIDI_patches=[0]*16,
|
| 290 |
+
verbose=False
|
| 291 |
+
)
|
| 292 |
+
midi_plot = TMIDIX.plot_ms_SONG(
|
| 293 |
+
midi_score,
|
| 294 |
+
plot_title='Godzilla Piano Transformer Composition',
|
| 295 |
+
block_lines_times_list=block_lines[:-1],
|
| 296 |
+
return_plt=True
|
| 297 |
+
)
|
| 298 |
+
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
|
| 299 |
+
soundfont_path=SOUDFONT_PATH,
|
| 300 |
+
sample_rate=16000,
|
| 301 |
+
output_for_gradio=True)
|
| 302 |
+
print("Added batch #", batch_number)
|
| 303 |
+
print_sep()
|
| 304 |
+
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
else:
|
| 306 |
return None, None, None, [], [], []
|
| 307 |
|
| 308 |
+
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines):
|
| 309 |
+
"""Remove tokens from the final composition and update outputs."""
|
| 310 |
+
if final_composition and len(final_composition) > num_tokens:
|
| 311 |
+
final_composition = final_composition[:-num_tokens]
|
| 312 |
+
if block_lines:
|
|
|
|
|
|
|
|
|
|
| 313 |
block_lines.pop()
|
| 314 |
+
midi_fname = save_midi(final_composition)
|
| 315 |
+
midi_score = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
| 316 |
+
final_composition,
|
| 317 |
+
output_signature='Godzilla Piano Transformer',
|
| 318 |
+
output_file_name=midi_fname,
|
| 319 |
+
track_name='Project Los Angeles',
|
| 320 |
+
list_of_MIDI_patches=[0]*16,
|
| 321 |
+
verbose=False
|
| 322 |
+
)
|
| 323 |
+
midi_plot = TMIDIX.plot_ms_SONG(
|
| 324 |
+
midi_score,
|
| 325 |
+
plot_title='Godzilla Piano Transformer Composition',
|
| 326 |
+
block_lines_times_list=block_lines[:-1],
|
| 327 |
+
return_plt=True
|
| 328 |
+
)
|
| 329 |
+
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
|
| 330 |
+
soundfont_path=SOUDFONT_PATH,
|
| 331 |
+
sample_rate=16000,
|
| 332 |
+
output_for_gradio=True)
|
| 333 |
+
print("Removed batch #", batch_number)
|
| 334 |
+
print_sep()
|
| 335 |
+
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines
|
|
|
|
|
|
|
|
|
|
| 336 |
else:
|
| 337 |
return None, None, None, [], [], []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
+
def clear():
|
| 340 |
+
"""Clear outputs and reset state."""
|
| 341 |
+
return None, None, None, [], []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
+
def reset(final_composition=[], generated_batches=[], block_lines=[]):
|
| 344 |
+
"""Reset composition state."""
|
| 345 |
+
return [], [], []
|
| 346 |
|
| 347 |
+
def reset_demo(final_composition=[], generated_batches=[], block_lines=[]):
|
| 348 |
+
"""Reset state for demo unload."""
|
| 349 |
+
return [], [], []
|
| 350 |
|
| 351 |
+
# -----------------------------
|
| 352 |
+
# GRADIO INTERFACE SETUP
|
| 353 |
+
# -----------------------------
|
| 354 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
| 355 |
demo.load(reset_demo)
|
| 356 |
|
|
|
|
|
|
|
| 357 |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Godzilla Piano Transformer</h1>")
|
| 358 |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples)</h1>")
|
| 359 |
gr.HTML("""
|
| 360 |
+
Check out <a href="https://huggingface.co/datasets/asigalov61/Godzilla-Piano">Godzilla Piano dataset</a> on Hugging Face
|
| 361 |
+
<p>
|
| 362 |
+
<a href="https://huggingface.co/spaces/asigalov61/Godzilla-Piano-Transformer?duplicate=true">
|
| 363 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
|
| 364 |
+
</a>
|
| 365 |
+
</p>
|
| 366 |
+
for faster execution and endless generation!
|
| 367 |
+
""")
|
| 368 |
+
|
| 369 |
+
# Global state variables for composition
|
|
|
|
|
|
|
|
|
|
| 370 |
final_composition = gr.State([])
|
| 371 |
generated_batches = gr.State([])
|
| 372 |
block_lines = gr.State([])
|
| 373 |
+
|
| 374 |
+
gr.Markdown("## Upload seed MIDI or click 'Generate' for a random output")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
| 376 |
+
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
|
| 377 |
+
[final_composition, generated_batches, block_lines])
|
|
|
|
|
|
|
| 378 |
|
| 379 |
+
gr.Markdown("## Generate")
|
|
|
|
|
|
|
|
|
|
| 380 |
num_prime_tokens = gr.Slider(15, 3072, value=3072, step=1, label="Number of prime tokens")
|
| 381 |
num_gen_tokens = gr.Slider(15, 1024, value=512, step=1, label="Number of tokens to generate")
|
| 382 |
num_mem_tokens = gr.Slider(15, 4096, value=4096, step=1, label="Number of memory tokens")
|
| 383 |
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
|
|
|
|
|
|
|
| 384 |
generate_btn = gr.Button("Generate", variant="primary")
|
| 385 |
|
| 386 |
+
gr.Markdown("## Batch Previews")
|
|
|
|
| 387 |
outputs = [final_composition, generated_batches, block_lines]
|
| 388 |
+
# Two outputs (audio and plot) for each batch
|
| 389 |
for i in range(NUM_OUT_BATCHES):
|
| 390 |
+
with gr.Tab(f"Batch # {i}"):
|
| 391 |
+
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3")
|
|
|
|
| 392 |
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
|
|
|
|
| 393 |
outputs.extend([audio_output, plot_output])
|
| 394 |
+
generate_btn.click(
|
| 395 |
+
generate_music_and_state,
|
| 396 |
+
[input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, model_temperature,
|
| 397 |
+
final_composition, generated_batches, block_lines],
|
| 398 |
+
outputs
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
gr.Markdown("## Add/Remove Batch")
|
| 402 |
+
batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
add_btn = gr.Button("Add batch", variant="primary")
|
| 404 |
remove_btn = gr.Button("Remove batch", variant="stop")
|
| 405 |
clear_btn = gr.ClearButton()
|
| 406 |
+
|
| 407 |
+
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3")
|
| 408 |
final_plot_output = gr.Plot(label="Final MIDI plot")
|
| 409 |
final_file_output = gr.File(label="Final MIDI file")
|
| 410 |
|
| 411 |
+
add_btn.click(
|
| 412 |
+
add_batch,
|
| 413 |
+
[batch_number, final_composition, generated_batches, block_lines],
|
| 414 |
+
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]
|
| 415 |
+
)
|
| 416 |
+
remove_btn.click(
|
| 417 |
+
remove_batch,
|
| 418 |
+
[batch_number, num_gen_tokens, final_composition, generated_batches, block_lines],
|
| 419 |
+
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]
|
| 420 |
+
)
|
| 421 |
+
clear_btn.click(clear, inputs=None,
|
| 422 |
+
outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
|
| 424 |
demo.unload(reset_demo)
|
| 425 |
|
| 426 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|