Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#==================================================================================
|
| 2 |
+
|
| 3 |
+
print('=' * 70)
|
| 4 |
+
print('Loading core Giant Music Transformer modules...')
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
print('=' * 70)
|
| 10 |
+
print('Loading main Giant Music Transformer modules...')
|
| 11 |
+
|
| 12 |
+
os.environ['USE_FLASH_ATTENTION'] = '1'
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
|
| 16 |
+
torch.set_float32_matmul_precision('high')
|
| 17 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
| 18 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
| 19 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
| 20 |
+
torch.backends.cuda.enable_math_sdp(True)
|
| 21 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
| 22 |
+
torch.backends.cuda.enable_cudnn_sdp(True)
|
| 23 |
+
|
| 24 |
+
os.chdir('/home/ubuntu/Giant-Music-Transformer/')
|
| 25 |
+
print("Current working directory: ", os.getcwd())
|
| 26 |
+
sys.path.append(os.getcwd())
|
| 27 |
+
import TMIDIX
|
| 28 |
+
|
| 29 |
+
from midi_to_colab_audio import midi_to_colab_audio
|
| 30 |
+
|
| 31 |
+
from x_transformer_1_23_2 import *
|
| 32 |
+
|
| 33 |
+
import random
|
| 34 |
+
|
| 35 |
+
os.chdir('/home/ubuntu/')
|
| 36 |
+
print('=' * 70)
|
| 37 |
+
print('Loading aux Giant Music Transformer modules...')
|
| 38 |
+
|
| 39 |
+
import matplotlib.pyplot as plt
|
| 40 |
+
|
| 41 |
+
import gradio as gr
|
| 42 |
+
|
| 43 |
+
print('=' * 70)
|
| 44 |
+
print('PyTorch version:', torch.__version__)
|
| 45 |
+
print('=' * 70)
|
| 46 |
+
print('Done!')
|
| 47 |
+
print('Enjoy! :)')
|
| 48 |
+
print('=' * 70)
|
| 49 |
+
|
| 50 |
+
#==================================================================================
|
| 51 |
+
|
| 52 |
+
print('=' * 70)
|
| 53 |
+
print('Instantiating model...')
|
| 54 |
+
|
| 55 |
+
device_type = 'cuda'
|
| 56 |
+
dtype = 'bfloat16'
|
| 57 |
+
|
| 58 |
+
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 59 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 60 |
+
|
| 61 |
+
SEQ_LEN = 8192
|
| 62 |
+
PAD_IDX = 19463
|
| 63 |
+
|
| 64 |
+
model = TransformerWrapper(
|
| 65 |
+
num_tokens = PAD_IDX+1,
|
| 66 |
+
max_seq_len = SEQ_LEN,
|
| 67 |
+
attn_layers = Decoder(dim = 2048,
|
| 68 |
+
depth = 8,
|
| 69 |
+
heads = 32,
|
| 70 |
+
rotary_pos_emb = True,
|
| 71 |
+
attn_flash = True
|
| 72 |
+
)
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
| 76 |
+
|
| 77 |
+
print('=' * 70)
|
| 78 |
+
print('Loading model checkpoint...')
|
| 79 |
+
|
| 80 |
+
model_path = '/home/ubuntu/Giant-Music-Transformer/Models/Medium/Giant_Music_Transformer_Medium_Trained_Model_10446_steps_0.7202_loss_0.8233_acc.pth'
|
| 81 |
+
|
| 82 |
+
model.load_state_dict(torch.load(model_path))
|
| 83 |
+
|
| 84 |
+
print('=' * 70)
|
| 85 |
+
|
| 86 |
+
model.cuda()
|
| 87 |
+
model.eval()
|
| 88 |
+
|
| 89 |
+
print('Done!')
|
| 90 |
+
print('=' * 70)
|
| 91 |
+
print('Model will use', dtype, 'precision...')
|
| 92 |
+
print('=' * 70)
|
| 93 |
+
|
| 94 |
+
#==================================================================================
|
| 95 |
+
|
| 96 |
+
SOUDFONT_PATH = '/usr/share/sounds/sf2/FluidR3_GM.sf2'
|
| 97 |
+
|
| 98 |
+
NUM_OUT_BATCHES = 8
|
| 99 |
+
|
| 100 |
+
#==================================================================================
|
| 101 |
+
|
| 102 |
+
def load_midi(input_midi):
|
| 103 |
+
|
| 104 |
+
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
| 105 |
+
|
| 106 |
+
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
|
| 107 |
+
|
| 108 |
+
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)
|
| 109 |
+
|
| 110 |
+
instruments_list = list(set([y[6] for y in escore_notes]))
|
| 111 |
+
|
| 112 |
+
#=======================================================
|
| 113 |
+
# FINAL PROCESSING
|
| 114 |
+
#=======================================================
|
| 115 |
+
|
| 116 |
+
melody_chords = []
|
| 117 |
+
|
| 118 |
+
# Break between compositions / Intro seq
|
| 119 |
+
|
| 120 |
+
if 128 in instruments_list:
|
| 121 |
+
drums_present = 19331 # Yes
|
| 122 |
+
else:
|
| 123 |
+
drums_present = 19330 # No
|
| 124 |
+
|
| 125 |
+
pat = escore_notes[0][6]
|
| 126 |
+
|
| 127 |
+
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
|
| 128 |
+
|
| 129 |
+
#=======================================================
|
| 130 |
+
# MAIN PROCESSING CYCLE
|
| 131 |
+
#=======================================================
|
| 132 |
+
|
| 133 |
+
pe = escore_notes[0]
|
| 134 |
+
|
| 135 |
+
for e in escore_notes:
|
| 136 |
+
|
| 137 |
+
#=======================================================
|
| 138 |
+
# Timings...
|
| 139 |
+
|
| 140 |
+
# Cliping all values...
|
| 141 |
+
delta_time = max(0, min(255, e[1]-pe[1]))
|
| 142 |
+
|
| 143 |
+
# Durations and channels
|
| 144 |
+
|
| 145 |
+
dur = max(0, min(255, e[2]))
|
| 146 |
+
cha = max(0, min(15, e[3]))
|
| 147 |
+
|
| 148 |
+
# Patches
|
| 149 |
+
if cha == 9: # Drums patch will be == 128
|
| 150 |
+
pat = 128
|
| 151 |
+
|
| 152 |
+
else:
|
| 153 |
+
pat = e[6]
|
| 154 |
+
|
| 155 |
+
# Pitches
|
| 156 |
+
|
| 157 |
+
ptc = max(1, min(127, e[4]))
|
| 158 |
+
|
| 159 |
+
# Velocities
|
| 160 |
+
|
| 161 |
+
# Calculating octo-velocity
|
| 162 |
+
vel = max(8, min(127, e[5]))
|
| 163 |
+
velocity = round(vel / 15)-1
|
| 164 |
+
|
| 165 |
+
#=======================================================
|
| 166 |
+
# FINAL NOTE SEQ
|
| 167 |
+
#=======================================================
|
| 168 |
+
|
| 169 |
+
# Writing final note asynchronously
|
| 170 |
+
|
| 171 |
+
dur_vel = (8 * dur) + velocity
|
| 172 |
+
pat_ptc = (129 * pat) + ptc
|
| 173 |
+
|
| 174 |
+
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
|
| 175 |
+
|
| 176 |
+
pe = e
|
| 177 |
+
|
| 178 |
+
return melody_chords
|
| 179 |
+
|
| 180 |
+
#==================================================================================
|
| 181 |
+
|
| 182 |
+
def save_midi(tokens, batch_number=None):
|
| 183 |
+
|
| 184 |
+
song = tokens
|
| 185 |
+
song_f = []
|
| 186 |
+
|
| 187 |
+
time = 0
|
| 188 |
+
dur = 0
|
| 189 |
+
vel = 90
|
| 190 |
+
pitch = 0
|
| 191 |
+
channel = 0
|
| 192 |
+
|
| 193 |
+
patches = [-1] * 16
|
| 194 |
+
|
| 195 |
+
channels = [0] * 16
|
| 196 |
+
channels[9] = 1
|
| 197 |
+
|
| 198 |
+
for ss in song:
|
| 199 |
+
|
| 200 |
+
if 0 <= ss < 256:
|
| 201 |
+
|
| 202 |
+
time += ss * 16
|
| 203 |
+
|
| 204 |
+
if 256 <= ss < 2304:
|
| 205 |
+
|
| 206 |
+
dur = ((ss-256) // 8) * 16
|
| 207 |
+
vel = (((ss-256) % 8)+1) * 15
|
| 208 |
+
|
| 209 |
+
if 2304 <= ss < 18945:
|
| 210 |
+
|
| 211 |
+
patch = (ss-2304) // 129
|
| 212 |
+
|
| 213 |
+
if patch < 128:
|
| 214 |
+
|
| 215 |
+
if patch not in patches:
|
| 216 |
+
if 0 in channels:
|
| 217 |
+
cha = channels.index(0)
|
| 218 |
+
channels[cha] = 1
|
| 219 |
+
else:
|
| 220 |
+
cha = 15
|
| 221 |
+
|
| 222 |
+
patches[cha] = patch
|
| 223 |
+
channel = patches.index(patch)
|
| 224 |
+
else:
|
| 225 |
+
channel = patches.index(patch)
|
| 226 |
+
|
| 227 |
+
if patch == 128:
|
| 228 |
+
channel = 9
|
| 229 |
+
|
| 230 |
+
pitch = (ss-2304) % 129
|
| 231 |
+
|
| 232 |
+
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
|
| 233 |
+
|
| 234 |
+
patches = [0 if x==-1 else x for x in patches]
|
| 235 |
+
|
| 236 |
+
if batch_number == None:
|
| 237 |
+
fname = '/home/ubuntu/Giant-Music-Transformer-Music-Composition'
|
| 238 |
+
|
| 239 |
+
else:
|
| 240 |
+
fname = '/home/ubuntu/Giant-Music-Transformer-Music-Composition_'+str(batch_number)
|
| 241 |
+
|
| 242 |
+
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
| 243 |
+
output_signature = 'Giant Music Transformer',
|
| 244 |
+
output_file_name = fname,
|
| 245 |
+
track_name='Project Los Angeles',
|
| 246 |
+
list_of_MIDI_patches=patches,
|
| 247 |
+
verbose=False
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
return song_f
|
| 251 |
+
|
| 252 |
+
#==================================================================================
|
| 253 |
+
|
| 254 |
+
def generate_music(prime,
|
| 255 |
+
num_gen_tokens,
|
| 256 |
+
num_gen_batches,
|
| 257 |
+
gen_outro,
|
| 258 |
+
gen_drums,
|
| 259 |
+
model_temperature,
|
| 260 |
+
model_sampling_top_p
|
| 261 |
+
):
|
| 262 |
+
|
| 263 |
+
if not prime:
|
| 264 |
+
inputs = [19461]
|
| 265 |
+
|
| 266 |
+
else:
|
| 267 |
+
inputs = prime
|
| 268 |
+
|
| 269 |
+
if gen_outro:
|
| 270 |
+
inputs.extend([18945])
|
| 271 |
+
|
| 272 |
+
if gen_drums:
|
| 273 |
+
drums = [36, 38]
|
| 274 |
+
drum_pitch = random.choice(drums)
|
| 275 |
+
inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304])
|
| 276 |
+
|
| 277 |
+
torch.cuda.empty_cache()
|
| 278 |
+
|
| 279 |
+
inp = [inputs] * num_gen_batches
|
| 280 |
+
|
| 281 |
+
inp = torch.LongTensor(inp).cuda()
|
| 282 |
+
|
| 283 |
+
with ctx:
|
| 284 |
+
with torch.inference_mode():
|
| 285 |
+
out = model.generate(inp,
|
| 286 |
+
num_gen_tokens,
|
| 287 |
+
filter_logits_fn=top_p,
|
| 288 |
+
filter_kwargs={'thres': model_sampling_top_p},
|
| 289 |
+
temperature=model_temperature,
|
| 290 |
+
return_prime=False,
|
| 291 |
+
verbose=False)
|
| 292 |
+
|
| 293 |
+
output = out.tolist()
|
| 294 |
+
|
| 295 |
+
return output
|
| 296 |
+
|
| 297 |
+
#==================================================================================
|
| 298 |
+
|
| 299 |
+
final_composition = []
|
| 300 |
+
generated_batches = []
|
| 301 |
+
|
| 302 |
+
#==================================================================================
|
| 303 |
+
|
| 304 |
+
def generate_callback(input_midi,
|
| 305 |
+
num_prime_tokens,
|
| 306 |
+
num_gen_tokens,
|
| 307 |
+
gen_outro,
|
| 308 |
+
gen_drums,
|
| 309 |
+
model_temperature,
|
| 310 |
+
model_sampling_top_p
|
| 311 |
+
):
|
| 312 |
+
|
| 313 |
+
global generated_batches
|
| 314 |
+
generated_batches = []
|
| 315 |
+
|
| 316 |
+
if not final_composition and input_midi is not None:
|
| 317 |
+
final_composition.extend(load_midi(input_midi)[:num_prime_tokens])
|
| 318 |
+
|
| 319 |
+
batched_gen_tokens = generate_music(final_composition,
|
| 320 |
+
num_gen_tokens,
|
| 321 |
+
NUM_OUT_BATCHES,
|
| 322 |
+
gen_outro,
|
| 323 |
+
gen_drums,
|
| 324 |
+
model_temperature,
|
| 325 |
+
model_sampling_top_p
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
outputs = []
|
| 329 |
+
|
| 330 |
+
for i in range(len(batched_gen_tokens)):
|
| 331 |
+
|
| 332 |
+
tokens = batched_gen_tokens[i]
|
| 333 |
+
|
| 334 |
+
# Save MIDI to a temporary file
|
| 335 |
+
midi_score = save_midi(tokens, i)
|
| 336 |
+
|
| 337 |
+
# MIDI plot
|
| 338 |
+
midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Batch # ' + str(i), return_plt=True)
|
| 339 |
+
|
| 340 |
+
# File name
|
| 341 |
+
fname = '/home/ubuntu/Giant-Music-Transformer-Music-Composition_'+str(i)
|
| 342 |
+
|
| 343 |
+
# Save audio to a temporary file
|
| 344 |
+
midi_audio = midi_to_colab_audio(fname + '.mid',
|
| 345 |
+
soundfont_path=SOUDFONT_PATH,
|
| 346 |
+
sample_rate=16000,
|
| 347 |
+
output_for_gradio=True
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
outputs.append(((16000, midi_audio), midi_plot, tokens))
|
| 351 |
+
|
| 352 |
+
return outputs
|
| 353 |
+
|
| 354 |
+
#==================================================================================
|
| 355 |
+
|
| 356 |
+
def generate_callback_wrapper(input_midi,
|
| 357 |
+
num_prime_tokens,
|
| 358 |
+
num_gen_tokens,
|
| 359 |
+
gen_outro,
|
| 360 |
+
gen_drums,
|
| 361 |
+
model_temperature,
|
| 362 |
+
model_sampling_top_p
|
| 363 |
+
):
|
| 364 |
+
|
| 365 |
+
result = generate_callback(input_midi,
|
| 366 |
+
num_prime_tokens,
|
| 367 |
+
num_gen_tokens,
|
| 368 |
+
gen_outro,
|
| 369 |
+
gen_drums,
|
| 370 |
+
model_temperature,
|
| 371 |
+
model_sampling_top_p
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
generated_batches.extend([sublist[2] for sublist in result])
|
| 375 |
+
|
| 376 |
+
return tuple(item for sublist in result for item in sublist[:2])
|
| 377 |
+
|
| 378 |
+
#==================================================================================
|
| 379 |
+
|
| 380 |
+
def add_batch(batch_number):
|
| 381 |
+
|
| 382 |
+
final_composition.extend(generated_batches[batch_number])
|
| 383 |
+
|
| 384 |
+
# Save MIDI to a temporary file
|
| 385 |
+
midi_score = save_midi(final_composition)
|
| 386 |
+
|
| 387 |
+
# MIDI plot
|
| 388 |
+
midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Giant Music Transformer Composition', return_plt=True)
|
| 389 |
+
|
| 390 |
+
# File name
|
| 391 |
+
fname = 'Giant-Music-Transformer-Music-Composition'
|
| 392 |
+
|
| 393 |
+
# Save audio to a temporary file
|
| 394 |
+
midi_audio = midi_to_colab_audio(fname + '.mid',
|
| 395 |
+
soundfont_path=SOUDFONT_PATH,
|
| 396 |
+
sample_rate=16000,
|
| 397 |
+
output_for_gradio=True
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
return (16000, midi_audio), midi_plot, fname+'.mid'
|
| 401 |
+
|
| 402 |
+
#==================================================================================
|
| 403 |
+
|
| 404 |
+
def remove_batch(batch_number, num_tokens):
|
| 405 |
+
|
| 406 |
+
global final_composition
|
| 407 |
+
|
| 408 |
+
if len(final_composition) > num_tokens:
|
| 409 |
+
final_composition = final_composition[:-num_tokens]
|
| 410 |
+
|
| 411 |
+
# Save MIDI to a temporary file
|
| 412 |
+
midi_score = save_midi(final_composition)
|
| 413 |
+
|
| 414 |
+
# MIDI plot
|
| 415 |
+
midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Giant Music Transformer Composition', return_plt=True)
|
| 416 |
+
|
| 417 |
+
# File name
|
| 418 |
+
fname = 'Giant-Music-Transformer-Music-Composition'
|
| 419 |
+
|
| 420 |
+
# Save audio to a temporary file
|
| 421 |
+
midi_audio = midi_to_colab_audio(fname + '.mid',
|
| 422 |
+
soundfont_path=SOUDFONT_PATH,
|
| 423 |
+
sample_rate=16000,
|
| 424 |
+
output_for_gradio=True
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
return (16000, midi_audio), midi_plot, fname+'.mid'
|
| 428 |
+
|
| 429 |
+
#==================================================================================
|
| 430 |
+
|
| 431 |
+
def reset():
|
| 432 |
+
global final_composition
|
| 433 |
+
final_composition = []
|
| 434 |
+
|
| 435 |
+
#==================================================================================
|
| 436 |
+
|
| 437 |
+
with gr.Blocks() as demo:
|
| 438 |
+
|
| 439 |
+
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
|
| 440 |
+
|
| 441 |
+
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
| 442 |
+
clear_btn = gr.ClearButton(input_midi, variant="stop", value="Reset")
|
| 443 |
+
|
| 444 |
+
clear_btn.click(reset)
|
| 445 |
+
|
| 446 |
+
gr.Markdown("## Generate")
|
| 447 |
+
|
| 448 |
+
num_prime_tokens = gr.Slider(15, 6999, value=600, step=3, label="Number of prime tokens")
|
| 449 |
+
num_gen_tokens = gr.Slider(15, 1200, value=600, step=3, label="Number of tokens to generate")
|
| 450 |
+
gen_outro = gr.Checkbox(value=False, label="Try to generate an outro")
|
| 451 |
+
gen_drums = gr.Checkbox(value=False, label="Try to introduce drums")
|
| 452 |
+
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
|
| 453 |
+
model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
|
| 454 |
+
|
| 455 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 456 |
+
|
| 457 |
+
gr.Markdown("## Select batch")
|
| 458 |
+
|
| 459 |
+
outputs = []
|
| 460 |
+
|
| 461 |
+
for i in range(NUM_OUT_BATCHES):
|
| 462 |
+
with gr.Tab(f"Batch # {i}") as tab:
|
| 463 |
+
|
| 464 |
+
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio")
|
| 465 |
+
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
|
| 466 |
+
|
| 467 |
+
outputs.extend([audio_output, plot_output])
|
| 468 |
+
|
| 469 |
+
generate_btn.click(generate_callback_wrapper,
|
| 470 |
+
[input_midi,
|
| 471 |
+
num_prime_tokens,
|
| 472 |
+
num_gen_tokens,
|
| 473 |
+
gen_outro,
|
| 474 |
+
gen_drums,
|
| 475 |
+
model_temperature,
|
| 476 |
+
model_sampling_top_p
|
| 477 |
+
],
|
| 478 |
+
outputs
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
gr.Markdown("## Add/Remove batch")
|
| 482 |
+
|
| 483 |
+
batch_number = gr.Slider(0, NUM_OUT_BATCHES, value=0, step=1, label="Batch number to add/remove")
|
| 484 |
+
|
| 485 |
+
add_btn = gr.Button("Add batch", variant="primary")
|
| 486 |
+
remove_btn = gr.Button("Remove batch", variant="stop")
|
| 487 |
+
|
| 488 |
+
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio")
|
| 489 |
+
final_plot_output = gr.Plot(label="Final MIDI plot")
|
| 490 |
+
final_file_output = gr.File(label="Final MIDI file")
|
| 491 |
+
|
| 492 |
+
add_btn.click(add_batch, inputs=[batch_number],
|
| 493 |
+
outputs=[final_audio_output, final_plot_output, final_file_output]
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
remove_btn.click(remove_batch, inputs=[batch_number, num_gen_tokens],
|
| 497 |
+
outputs=[final_audio_output, final_plot_output, final_file_output]
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
demo.unload(lambda: print("User ended session."))
|
| 501 |
+
|
| 502 |
+
demo.launch(share=True)
|