Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -56,7 +56,10 @@ print('=' * 70)
|
|
| 56 |
|
| 57 |
#==================================================================================
|
| 58 |
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
|
| 62 |
|
|
@@ -66,45 +69,47 @@ PREVIEW_LENGTH = 120 # in tokens
|
|
| 66 |
|
| 67 |
#==================================================================================
|
| 68 |
|
| 69 |
-
|
| 70 |
-
print('Instantiating model...')
|
| 71 |
-
|
| 72 |
-
device_type = 'cuda'
|
| 73 |
-
dtype = 'bfloat16'
|
| 74 |
-
|
| 75 |
-
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 76 |
-
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 77 |
-
|
| 78 |
-
SEQ_LEN = 2048
|
| 79 |
-
PAD_IDX = 512
|
| 80 |
-
|
| 81 |
-
model = TransformerWrapper(
|
| 82 |
-
num_tokens = PAD_IDX+1,
|
| 83 |
-
max_seq_len = SEQ_LEN,
|
| 84 |
-
attn_layers = Decoder(dim = 2048,
|
| 85 |
-
depth = 4,
|
| 86 |
-
heads = 32,
|
| 87 |
-
rotary_pos_emb = True,
|
| 88 |
-
attn_flash = True
|
| 89 |
-
)
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
| 93 |
-
|
| 94 |
-
print('=' * 70)
|
| 95 |
-
print('Loading model checkpoint...')
|
| 96 |
-
|
| 97 |
-
model_checkpoint = hf_hub_download(repo_id='asigalov61/Monster-Piano-Transformer', filename=MODEL_CHECKPOINT_VEL)
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
#==================================================================================
|
| 110 |
|
|
@@ -304,7 +309,8 @@ def generate_callback_wrapper(input_midi,
|
|
| 304 |
# model_sampling_top_p,
|
| 305 |
final_composition,
|
| 306 |
generated_batches,
|
| 307 |
-
block_lines
|
|
|
|
| 308 |
):
|
| 309 |
|
| 310 |
print('=' * 70)
|
|
@@ -317,6 +323,10 @@ def generate_callback_wrapper(input_midi,
|
|
| 317 |
fn1 = fn.split('.')[0]
|
| 318 |
print('Input file name:', fn)
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
print('Num prime tokens:', num_prime_tokens)
|
| 321 |
print('Num gen tokens:', num_gen_tokens)
|
| 322 |
print('Num mem tokens:', num_mem_tokens)
|
|
@@ -481,6 +491,13 @@ with gr.Blocks() as demo:
|
|
| 481 |
[final_composition, generated_batches, block_lines])
|
| 482 |
|
| 483 |
gr.Markdown("## Generate")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
|
| 485 |
num_prime_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of prime tokens")
|
| 486 |
num_gen_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of tokens to generate")
|
|
@@ -511,7 +528,8 @@ with gr.Blocks() as demo:
|
|
| 511 |
# model_sampling_top_p,
|
| 512 |
final_composition,
|
| 513 |
generated_batches,
|
| 514 |
-
block_lines
|
|
|
|
| 515 |
],
|
| 516 |
outputs
|
| 517 |
)
|
|
|
|
| 56 |
|
| 57 |
#==================================================================================
|
| 58 |
|
| 59 |
+
MODEL_CHECKPOINTS = {
|
| 60 |
+
'with velocity': 'Monster_Piano_Transformer_Velocity_Trained_Model_59896_steps_0.9055_loss_0.735_acc.pth',
|
| 61 |
+
'without velocity': 'Monster_Piano_Transformer_Velocity_Trained_Model_59896_steps_0.9055_loss_0.735_acc.pth'
|
| 62 |
+
}
|
| 63 |
|
| 64 |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
|
| 65 |
|
|
|
|
| 69 |
|
| 70 |
#==================================================================================
|
| 71 |
|
| 72 |
+
def load_model(model_selector):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
print('=' * 70)
|
| 75 |
+
print('Instantiating model...')
|
| 76 |
+
|
| 77 |
+
device_type = 'cuda'
|
| 78 |
+
dtype = 'bfloat16'
|
| 79 |
+
|
| 80 |
+
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 81 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 82 |
+
|
| 83 |
+
SEQ_LEN = 2048
|
| 84 |
+
PAD_IDX = 512
|
| 85 |
+
|
| 86 |
+
model = TransformerWrapper(
|
| 87 |
+
num_tokens = PAD_IDX+1,
|
| 88 |
+
max_seq_len = SEQ_LEN,
|
| 89 |
+
attn_layers = Decoder(dim = 2048,
|
| 90 |
+
depth = 4,
|
| 91 |
+
heads = 32,
|
| 92 |
+
rotary_pos_emb = True,
|
| 93 |
+
attn_flash = True
|
| 94 |
+
)
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
| 98 |
+
|
| 99 |
+
print('=' * 70)
|
| 100 |
+
print('Loading model checkpoint...')
|
| 101 |
+
|
| 102 |
+
model_checkpoint = hf_hub_download(repo_id='asigalov61/Monster-Piano-Transformer', filename=MODEL_CHECKPOINTS[model_selector])
|
| 103 |
+
|
| 104 |
+
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu'))
|
| 105 |
+
|
| 106 |
+
model = torch.compile(model, mode='max-autotune')
|
| 107 |
+
|
| 108 |
+
print('=' * 70)
|
| 109 |
+
print('Done!')
|
| 110 |
+
print('=' * 70)
|
| 111 |
+
print('Model will use', dtype, 'precision...')
|
| 112 |
+
print('=' * 70)
|
| 113 |
|
| 114 |
#==================================================================================
|
| 115 |
|
|
|
|
| 309 |
# model_sampling_top_p,
|
| 310 |
final_composition,
|
| 311 |
generated_batches,
|
| 312 |
+
block_lines,
|
| 313 |
+
model_selector
|
| 314 |
):
|
| 315 |
|
| 316 |
print('=' * 70)
|
|
|
|
| 323 |
fn1 = fn.split('.')[0]
|
| 324 |
print('Input file name:', fn)
|
| 325 |
|
| 326 |
+
print('Selected model type:', model_selector)
|
| 327 |
+
|
| 328 |
+
load_model(model_selector)
|
| 329 |
+
|
| 330 |
print('Num prime tokens:', num_prime_tokens)
|
| 331 |
print('Num gen tokens:', num_gen_tokens)
|
| 332 |
print('Num mem tokens:', num_mem_tokens)
|
|
|
|
| 491 |
[final_composition, generated_batches, block_lines])
|
| 492 |
|
| 493 |
gr.Markdown("## Generate")
|
| 494 |
+
|
| 495 |
+
model_selector = gr.gr.Dropdown(["with velocity",
|
| 496 |
+
"Without velocity"
|
| 497 |
+
],
|
| 498 |
+
label="Select model",
|
| 499 |
+
info="Select desired Monster Piano Transformer model"
|
| 500 |
+
)
|
| 501 |
|
| 502 |
num_prime_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of prime tokens")
|
| 503 |
num_gen_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of tokens to generate")
|
|
|
|
| 528 |
# model_sampling_top_p,
|
| 529 |
final_composition,
|
| 530 |
generated_batches,
|
| 531 |
+
block_lines,
|
| 532 |
+
model_selector
|
| 533 |
],
|
| 534 |
outputs
|
| 535 |
)
|