File size: 7,128 Bytes
33a154e
 
 
 
 
 
 
 
 
 
 
 
1ff3381
33a154e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import random
import uuid
from typing import Tuple
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from huggingface_hub import login
# Log in to Hugging Face using the provided token
hf_token = os.getenv("HF_TOKEN")
login(hf_token)

DESCRIPTIONz = """## STABLE IMAGINE 🍺"""

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max
DESCRIPTIONz = ""

if not torch.cuda.is_available():
    DESCRIPTIONz += """
    <p>⚠️Running on CPU, This may not work on CPU. If it runs for an extended time or if you encounter errors, try running it on a GPU by duplicating the space using @spaces.GPU(). 📍</p>
    """

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0

if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V4.0_Lightning",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    pipe.to("cuda")

    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

else:
    # If CUDA is not available, fall back to CPU (not ideal for SDXL)
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V4.0_Lightning",
        torch_dtype=torch.float32,  # safer for CPU
        use_safetensors=True,
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    pipe.to("cpu")

    if ENABLE_CPU_OFFLOAD:
        # Optionally offload to CPU with accelerate or similar, if set up
        pipe.enable_model_cpu_offload()



LORA_OPTIONS = {
        "Realism (face/character)👦🏻": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
        "Pixar (art/toons)🙀": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
        "Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
        "Fashion Product (wearing/usable)👜": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
        "Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
        "Modern Clothing (trend/new)👕": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
        "Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
        "Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
        "Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
    }

for model_name, weight_name, adapter_name in LORA_OPTIONS.values():
    pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
pipe.to("cuda")


style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    # Add more style dicts here if needed
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]

    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative


DEFAULT_STYLE_NAME = "3840 x 2160"


@spaces.GPU(duration=60, enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    lora_model: str = "Realism (face/character)👦🏻",
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))

    positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
    
    if not use_negative_prompt:
        effective_negative_prompt = ""  # type: ignore

    model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
    pipe.set_adapters(adapter_name)

    images = pipe(
        prompt=positive_prompt,
        negative_prompt=effective_negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=20,
        num_images_per_prompt=1,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    return image_paths, seed


with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTIONz)
    
    with gr.Row():
        input_prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt", lines=2)
        use_negative_prompt = gr.Checkbox(label="Use negative prompt?", value=False)
        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt", lines=2)
    
    with gr.Row():
        randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
        seed = gr.Number(value=0, label="Seed")
    
    with gr.Row():
        style_dropdown = gr.Dropdown(label="Image Style", choices=list(styles.keys()), value=DEFAULT_STYLE_NAME)
        lora_dropdown = gr.Dropdown(label="LoRA Model", choices=list(LORA_OPTIONS.keys()), value="Realism (face/character)👦🏻")
    
    with gr.Row():
        width = gr.Slider(512, 2048, value=1024, step=64, label="Width")
        height = gr.Slider(512, 2048, value=1024, step=64, label="Height")
    
    with gr.Row():
        guidance_scale = gr.Slider(1.0, 15.0, value=3, step=0.5, label="Guidance Scale")
    
    output_gallery = gr.Gallery(label="Generated Images", columns=[2], height="auto")
    output_seed = gr.Number(label="Final Seed", interactive=False)

    
    generate_button = gr.Button("Generate Images")

    generate_button.click(
        fn=generate,
        inputs=[
            input_prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_dropdown,
            lora_dropdown,
        ],
        outputs=[output_gallery, output_seed],
    )

demo.launch()