File size: 13,433 Bytes
dd19c95
 
 
 
fdce011
 
d45e6fb
 
 
 
3503a08
d45e6fb
3503a08
fdce011
 
 
 
 
 
 
3503a08
fdce011
 
 
 
3503a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45e6fb
fdce011
d45e6fb
 
 
 
fdce011
 
d45e6fb
fdce011
d45e6fb
 
 
 
fdce011
d45e6fb
fdce011
d45e6fb
fdce011
 
d45e6fb
fdce011
d45e6fb
fdce011
d45e6fb
fdce011
 
d45e6fb
fdce011
 
d45e6fb
fdce011
d45e6fb
fdce011
3503a08
fdce011
 
3503a08
fdce011
3503a08
 
fdce011
3503a08
fdce011
3503a08
 
 
 
 
 
 
 
 
 
 
 
 
fdce011
3503a08
 
 
fdce011
 
3503a08
fdce011
3503a08
fdce011
3503a08
fdce011
 
3503a08
fdce011
3503a08
 
 
fdce011
3503a08
fdce011
 
3503a08
 
fdce011
 
3503a08
fdce011
3503a08
fdce011
d45e6fb
3503a08
d45e6fb
 
 
3503a08
d45e6fb
 
fdce011
3503a08
 
fdce011
3503a08
 
fdce011
 
 
 
 
 
 
 
 
d45e6fb
fdce011
 
d45e6fb
fdce011
3503a08
fdce011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45e6fb
3503a08
fdce011
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# With torch.nn as nn, we build the brain,
# Gradio as gr, makes demos reign.
# PIL's Image, Filter, Ops, and Chops,
# transforms from torchvision, style never stops!
### 🖥️ New and Improved Application Code

import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image, ImageFilter, ImageOps, ImageChops
import torchvision.transforms as transforms
import os
import random
import pathlib

# --- ⚙️ Configuration ---
# Create a directory to save output images
output_dir = "outputs"
os.makedirs(output_dir, exist_ok=True)

# Define allowed image extensions for the file explorer
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".bmp", ".gif", ".tiff"]

# --- 🎨 Filters ---
FILTERS = {
    "Standard": "📄", "Invert": "⚫⚪", "Blur": "🌫️", "Sharpen": "🔪", "Contour": "🗺️",
    "Detail": "🔍", "EdgeEnhance": "📏", "EdgeEnhanceMore": "📐", "Emboss": "🏞️",
    "FindEdges": "🕵️", "Smooth": "🌊", "SmoothMore": "💧", "Solarize": "☀️",
    "Posterize1": "🖼️1", "Posterize2": "🖼️2", "Posterize3": "🖼️3", "Posterize4": "🖼️4",
    "Equalize": "⚖️", "AutoContrast": "🔧", "Thick1": "💪1", "Thick2": "💪2", "Thick3": "💪3",
    "Thin1": "🏃1", "Thin2": "🏃2", "Thin3": "🏃3", "RedOnWhite": "🔴", "OrangeOnWhite": "🟠",
    "YellowOnWhite": "🟡", "GreenOnWhite": "🟢", "BlueOnWhite": "🔵", "PurpleOnWhite": "🟣",
    "PinkOnWhite": "🌸", "CyanOnWhite": "🩵", "MagentaOnWhite": "🟪", "BrownOnWhite": "🤎",
    "GrayOnWhite": "🩶", "WhiteOnBlack": "⚪", "RedOnBlack": "🔴⚫", "OrangeOnBlack": "🟠⚫",
    "YellowOnBlack": "🟡⚫", "GreenOnBlack": "🟢⚫", "BlueOnBlack": "🔵⚫", "PurpleOnBlack": "🟣⚫",
    "PinkOnBlack": "🌸⚫", "CyanOnBlack": "🩵⚫", "MagentaOnBlack": "🟪⚫", "BrownOnBlack": "🤎⚫",
    "GrayOnBlack": "🩶⚫", "Multiply": "✖️", "Screen": "🖥️", "Overlay": "🔲", "Add": "➕",
    "Subtract": "➖", "Difference": "≠", "Darker": "🌑", "Lighter": "🌕", "SoftLight": "💡",
    "HardLight": "🔦", "Binary": "🌓", "Noise": "❄️"
}

# --- 🧠 Neural Network Model (Unchanged) ---
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()
        conv_block = [  nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features) ]
        self.conv_block = nn.Sequential(*conv_block)
    def forward(self, x): return x + self.conv_block(x)

class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()
        model0 = [   nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)
        model1, in_features, out_features = [], 64, 128
        for _ in range(2):
            model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ]
            in_features = out_features; out_features = in_features*2
        self.model1 = nn.Sequential(*model1)
        model2 = [ResidualBlock(in_features) for _ in range(n_residual_blocks)]
        self.model2 = nn.Sequential(*model2)
        model3, out_features = [], in_features//2
        for _ in range(2):
            model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ]
            in_features = out_features; out_features = in_features//2
        self.model3 = nn.Sequential(*model3)
        model4 = [  nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
        if sigmoid: model4 += [nn.Sigmoid()]
        self.model4 = nn.Sequential(*model4)
    def forward(self, x, cond=None): return self.model4(self.model3(self.model2(self.model1(self.model0(x)))))

# --- 🔧 Model Loading ---
try:
    model1 = Generator(3, 1, 3); model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu'))); model1.eval()
    model2 = Generator(3, 1, 3); model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu'))); model2.eval()
except FileNotFoundError:
    print("⚠️ Warning: Model files 'model.pth' or 'model2.pth' not found. The application will not run correctly.")
    model1, model2 = None, None

# --- ✨ Filter Application Logic (Unchanged) ---
def apply_filter(line_img, filter_name, original_img):
    if filter_name == "Standard": return line_img
    line_img_l = line_img.convert('L')
    if filter_name == "Invert": return ImageOps.invert(line_img_l)
    if filter_name == "Blur": return line_img.filter(ImageFilter.GaussianBlur(radius=3))
    if filter_name == "Sharpen": return line_img.filter(ImageFilter.SHARPEN)
    if filter_name == "Contour": return line_img_l.filter(ImageFilter.CONTOUR)
    if filter_name == "Detail": return line_img.filter(ImageFilter.DETAIL)
    if filter_name == "EdgeEnhance": return line_img_l.filter(ImageFilter.EDGE_ENHANCE)
    if filter_name == "EdgeEnhanceMore": return line_img_l.filter(ImageFilter.EDGE_ENHANCE_MORE)
    if filter_name == "Emboss": return line_img_l.filter(ImageFilter.EMBOSS)
    if filter_name == "FindEdges": return line_img_l.filter(ImageFilter.FIND_EDGES)
    if filter_name == "Smooth": return line_img.filter(ImageFilter.SMOOTH)
    if filter_name == "SmoothMore": return line_img.filter(ImageFilter.SMOOTH_MORE)
    if filter_name == "Solarize": return ImageOps.solarize(line_img_l)
    if filter_name.startswith("Posterize"): return ImageOps.posterize(line_img_l, int(filter_name[-1]))
    if filter_name == "Equalize": return ImageOps.equalize(line_img_l)
    if filter_name == "AutoContrast": return ImageOps.autocontrast(line_img_l)
    if filter_name == "Binary": return line_img_l.convert('1')
    if filter_name.startswith("Thick"): return line_img_l.filter(ImageFilter.MinFilter(3 if filter_name[-1]=='1' else (5 if filter_name[-1]=='2' else 7)))
    if filter_name.startswith("Thin"): return line_img_l.filter(ImageFilter.MaxFilter(3 if filter_name[-1]=='1' else (5 if filter_name[-1]=='2' else 7)))
    colors_on_white = {"RedOnWhite": "red", "OrangeOnWhite": "orange", "YellowOnWhite": "yellow", "GreenOnWhite": "green", "BlueOnWhite": "blue", "PurpleOnWhite": "purple", "PinkOnWhite": "pink", "CyanOnWhite": "cyan", "MagentaOnWhite": "magenta", "BrownOnWhite": "brown", "GrayOnWhite": "gray"}
    if filter_name in colors_on_white: return ImageOps.colorize(line_img_l, black=colors_on_white[filter_name], white="white")
    colors_on_black = {"WhiteOnBlack": "white", "RedOnBlack": "red", "OrangeOnBlack": "orange", "YellowOnBlack": "yellow", "GreenOnBlack": "green", "BlueOnBlack": "blue", "PurpleOnBlack": "purple", "PinkOnBlack": "pink", "CyanOnBlack": "cyan", "MagentaOnBlack": "magenta", "BrownOnBlack": "brown", "GrayOnBlack": "gray"}
    if filter_name in colors_on_black: return ImageOps.colorize(line_img_l, black=colors_on_black[filter_name], white="black")
    line_img_rgb = line_img.convert('RGB')
    blend_ops = {"Multiply": ImageChops.multiply, "Screen": ImageChops.screen, "Overlay": ImageChops.overlay, "Add": ImageChops.add, "Subtract": ImageChops.subtract, "Difference": ImageChops.difference, "Darker": ImageChops.darker, "Lighter": ImageChops.lighter, "SoftLight": ImageChops.soft_light, "HardLight": ImageChops.hard_light}
    if filter_name in blend_ops: return blend_ops[filter_name](original_img, line_img_rgb)
    if filter_name == "Noise":
        img_array = np.array(line_img_l)
        noise = np.random.randint(-20, 20, img_array.shape, dtype='int16')
        noisy_array = np.clip(img_array.astype('int16') + noise, 0, 255).astype('uint8')
        return Image.fromarray(noisy_array)
    return line_img

# --- 🖼️ Main Processing Function (Updated) ---
def process_image(input_img_path, line_style, filter_choice, gallery_state):
    if not model1 or not model2:
        raise gr.Error("Models are not loaded. Please check for 'model.pth' and 'model2.pth'.")
    if not input_img_path:
        raise gr.Error("Please select an image from the file explorer first.")

    filter_name = filter_choice.split(" ", 1)[1]
    original_img = Image.open(input_img_path).convert('RGB')
    
    transform = transforms.Compose([
        transforms.Resize(256, transforms.InterpolationMode.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    input_tensor = transform(original_img).unsqueeze(0)

    with torch.no_grad():
        output = model2(input_tensor) if line_style == 'Simple Lines' else model1(input_tensor)
    
    line_drawing_low_res = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
    line_drawing_full_res = line_drawing_low_res.resize(original_img.size, Image.Resampling.BICUBIC)
    
    final_image = apply_filter(line_drawing_full_res, filter_name, original_img)
    
    # --- 💾 Save the output and update gallery state ---
    base_name = pathlib.Path(input_img_path).stem
    output_filename = f"{base_name}_{filter_name}.png"
    output_filepath = os.path.join(output_dir, output_filename)
    final_image.save(output_filepath)
    
    # Add new image path to the beginning of the list
    gallery_state.insert(0, output_filepath)

    # Return the single latest image for the main output and the updated list for the gallery
    return final_image, gallery_state

# --- 🚀 Gradio UI Setup ---
title = "🖌️ Image to Line Art with Creative Filters"
description = "1. Browse and select an image using the file explorer. 2. Choose a line style. 3. Pick a filter. Your results will be saved to the 'outputs' folder and appear in the gallery below."

# --- Dynamic Examples Generation ---
def generate_examples():
    example_images = [f"{i:02d}.jpeg" for i in range(1, 11)]
    # Filter for only existing example images
    valid_example_images = [img for img in example_images if os.path.exists(img)]
    
    if not valid_example_images:
        print("⚠️ Warning: No example images ('01.jpeg' through '10.jpeg') found. Examples will be empty.")
        return []

    examples = []
    for name, emoji in FILTERS.items():
        filter_choice = f"{emoji} {name}"
        random_image = random.choice(valid_example_images)
        line_style = random.choice(['Simple Lines', 'Complex Lines'])
        examples.append([random_image, line_style, filter_choice])
    # Shuffle to make the order random on each load
    random.shuffle(examples)
    return examples

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
    gr.Markdown(description)

    # Stores the list of gallery image paths
    gallery_state = gr.State(value=[])

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 1. Select an Image")
            # File explorer for a better user experience
            input_image_path = gr.FileExplorer(
                root=".",
                glob=f"**/*[{''.join(ext[1:] for ext in IMAGE_EXTENSIONS)}]",
                label="Browse Your Images",
                height=400
            )
            gr.Markdown("### 2. Choose a Line Style")
            line_style_radio = gr.Radio(
                ['Complex Lines', 'Simple Lines'],
                label="Line Style",
                value='Simple Lines'
            )
        
        with gr.Column(scale=3):
            gr.Markdown("### 3. Pick a Filter")
            filter_buttons = [gr.Button(value=f"{emoji} {name}") for name, emoji in FILTERS.items()]
            
            # Hidden radio to store the selected button's value
            selected_filter = gr.Radio(
                [b.value for b in filter_buttons],
                label="Selected Filter",
                visible=False,
                value=filter_buttons[0].value
            )

            gr.Markdown("### 4. Result")
            main_output_image = gr.Image(type="pil", label="Latest Result")
    
    with gr.Row():
        gr.Markdown("---")
        
    with gr.Row():
         # --- Dynamic Examples ---
        gr.Examples(
            examples=generate_examples(),
            inputs=[input_image_path, line_style_radio, selected_filter],
            label="✨ Click an Example to Start",
            examples_per_page=10
        )
        
    with gr.Row():
        gr.Markdown("## 🖼️ Result Gallery (Saved in 'outputs' folder)")
        gallery_output = gr.Gallery(label="Your Generated Images", height=600, columns=5)
    
    # --- Event Handling ---
    def handle_filter_click(btn_value, current_path, style, state):
        # When a filter button is clicked, it triggers the main processing function
        new_main_img, new_state = process_image(current_path, style, btn_value, state)
        # Update the hidden radio, the main image, and the gallery
        return btn_value, new_main_img, new_state

    for btn in filter_buttons:
        btn.click(
            fn=handle_filter_click,
            inputs=[btn, input_image_path, line_style_radio, gallery_state],
            outputs=[selected_filter, main_output_image, gallery_state]
        )

if __name__ == "__main__":
    demo.launch()