Spaces:
Running
Running
Upload 2 files
Browse files- app.py +129 -46
- requirements.txt +1 -2
app.py
CHANGED
@@ -1,60 +1,148 @@
|
|
1 |
import spaces
|
|
|
|
|
2 |
import gradio as gr
|
|
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
-
import numpy as np
|
5 |
-
from orpheus_cpp import OrpheusCpp
|
6 |
load_dotenv()
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@spaces.GPU()
|
30 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
31 |
if not text.strip():
|
32 |
return None
|
33 |
|
34 |
try:
|
35 |
-
progress(0.
|
36 |
-
|
37 |
-
# Configuration des options de génération
|
38 |
-
options = {
|
39 |
-
"voice_id": voice,
|
40 |
-
"temperature": temperature,
|
41 |
-
"top_p": top_p,
|
42 |
-
"repetition_penalty": repetition_penalty,
|
43 |
-
"max_tokens": max_new_tokens
|
44 |
-
}
|
45 |
|
46 |
-
progress(0.
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
progress(0.
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
audio_samples = np.array(audio_samples)
|
56 |
|
57 |
-
return (
|
58 |
except Exception as e:
|
59 |
print(f"Erreur lors de la génération de la parole: {e}")
|
60 |
return None
|
@@ -87,11 +175,6 @@ with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
|
87 |
- Ajoutez des éléments paralinguistiques comme {", ".join(EMOTIVE_TAGS)} ou `euh` pour une parole plus humaine.
|
88 |
- Les textes plus longs fonctionnent généralement mieux que les phrases très courtes
|
89 |
- Augmenter `repetition_penalty` et `temperature` fait parler le modèle plus rapidement.
|
90 |
-
|
91 |
-
## Améliorations avec orpheus-cpp:
|
92 |
-
- Performances optimisées et temps de génération réduit
|
93 |
-
- Utilisation plus efficace de la mémoire
|
94 |
-
- Latence réduite pour une meilleure expérience utilisateur
|
95 |
""")
|
96 |
with gr.Row():
|
97 |
with gr.Column(scale=3):
|
|
|
1 |
import spaces
|
2 |
+
from snac import SNAC
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
from dotenv import load_dotenv
|
|
|
|
|
8 |
load_dotenv()
|
9 |
|
10 |
+
# Vérifier si CUDA est disponible
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
print("Chargement du modèle SNAC...")
|
14 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
15 |
+
snac_model = snac_model.to(device)
|
16 |
+
|
17 |
+
model_name = "canopylabs/3b-fr-ft-research_release"
|
18 |
+
|
19 |
+
# Télécharger uniquement la configuration du modèle et les safetensors
|
20 |
+
snapshot_download(
|
21 |
+
repo_id=model_name,
|
22 |
+
allow_patterns=[
|
23 |
+
"config.json",
|
24 |
+
"*.safetensors",
|
25 |
+
"model.safetensors.index.json",
|
26 |
+
],
|
27 |
+
ignore_patterns=[
|
28 |
+
"optimizer.pt",
|
29 |
+
"pytorch_model.bin",
|
30 |
+
"training_args.bin",
|
31 |
+
"scheduler.pt",
|
32 |
+
"tokenizer.json",
|
33 |
+
"tokenizer_config.json",
|
34 |
+
"special_tokens_map.json",
|
35 |
+
"vocab.json",
|
36 |
+
"merges.txt",
|
37 |
+
"tokenizer.*"
|
38 |
+
]
|
39 |
+
)
|
40 |
+
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
42 |
+
model.to(device)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
print(f"Modèle Orpheus chargé sur {device}")
|
45 |
+
|
46 |
+
# Traiter le texte d'entrée
|
47 |
+
def process_prompt(prompt, voice, tokenizer, device):
|
48 |
+
prompt = f"{voice}: {prompt}"
|
49 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
50 |
+
|
51 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64) # Début humain
|
52 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # Fin du texte, Fin humain
|
53 |
+
|
54 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Texte EOT EOH
|
55 |
+
|
56 |
+
# Pas besoin de padding pour une seule entrée
|
57 |
+
attention_mask = torch.ones_like(modified_input_ids)
|
58 |
+
|
59 |
+
return modified_input_ids.to(device), attention_mask.to(device)
|
60 |
+
|
61 |
+
# Analyser les tokens de sortie en audio
|
62 |
+
def parse_output(generated_ids):
|
63 |
+
token_to_find = 128257
|
64 |
+
token_to_remove = 128258
|
65 |
+
|
66 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
67 |
+
|
68 |
+
if len(token_indices[1]) > 0:
|
69 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
70 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
71 |
+
else:
|
72 |
+
cropped_tensor = generated_ids
|
73 |
|
74 |
+
processed_rows = []
|
75 |
+
for row in cropped_tensor:
|
76 |
+
masked_row = row[row != token_to_remove]
|
77 |
+
processed_rows.append(masked_row)
|
78 |
+
|
79 |
+
code_lists = []
|
80 |
+
for row in processed_rows:
|
81 |
+
row_length = row.size(0)
|
82 |
+
new_length = (row_length // 7) * 7
|
83 |
+
trimmed_row = row[:new_length]
|
84 |
+
trimmed_row = [t - 128266 for t in trimmed_row]
|
85 |
+
code_lists.append(trimmed_row)
|
86 |
+
|
87 |
+
return code_lists[0] # Retourner uniquement le premier pour un seul échantillon
|
88 |
+
|
89 |
+
# Redistribuer les codes pour la génération audio
|
90 |
+
def redistribute_codes(code_list, snac_model):
|
91 |
+
device = next(snac_model.parameters()).device # Obtenir le périphérique du modèle SNAC
|
92 |
+
|
93 |
+
layer_1 = []
|
94 |
+
layer_2 = []
|
95 |
+
layer_3 = []
|
96 |
+
for i in range((len(code_list)+1)//7):
|
97 |
+
layer_1.append(code_list[7*i])
|
98 |
+
layer_2.append(code_list[7*i+1]-4096)
|
99 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
100 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
101 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
102 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
103 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
104 |
+
|
105 |
+
# Déplacer les tenseurs vers le même périphérique que le modèle SNAC
|
106 |
+
codes = [
|
107 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
108 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
109 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
110 |
+
]
|
111 |
+
|
112 |
+
audio_hat = snac_model.decode(codes)
|
113 |
+
return audio_hat.detach().squeeze().cpu().numpy() # Toujours retourner un tableau numpy CPU
|
114 |
+
|
115 |
+
# Fonction principale de génération
|
116 |
@spaces.GPU()
|
117 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
118 |
if not text.strip():
|
119 |
return None
|
120 |
|
121 |
try:
|
122 |
+
progress(0.1, "Traitement du texte...")
|
123 |
+
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
progress(0.3, "Génération des tokens de parole...")
|
126 |
+
with torch.no_grad():
|
127 |
+
generated_ids = model.generate(
|
128 |
+
input_ids=input_ids,
|
129 |
+
attention_mask=attention_mask,
|
130 |
+
max_new_tokens=max_new_tokens,
|
131 |
+
do_sample=True,
|
132 |
+
temperature=temperature,
|
133 |
+
top_p=top_p,
|
134 |
+
repetition_penalty=repetition_penalty,
|
135 |
+
num_return_sequences=1,
|
136 |
+
eos_token_id=128258,
|
137 |
+
)
|
138 |
|
139 |
+
progress(0.6, "Traitement des tokens de parole...")
|
140 |
+
code_list = parse_output(generated_ids)
|
141 |
|
142 |
+
progress(0.8, "Conversion en audio...")
|
143 |
+
audio_samples = redistribute_codes(code_list, snac_model)
|
|
|
144 |
|
145 |
+
return (24000, audio_samples) # Retourner le taux d'échantillonnage et l'audio
|
146 |
except Exception as e:
|
147 |
print(f"Erreur lors de la génération de la parole: {e}")
|
148 |
return None
|
|
|
175 |
- Ajoutez des éléments paralinguistiques comme {", ".join(EMOTIVE_TAGS)} ou `euh` pour une parole plus humaine.
|
176 |
- Les textes plus longs fonctionnent généralement mieux que les phrases très courtes
|
177 |
- Augmenter `repetition_penalty` et `temperature` fait parler le modèle plus rapidement.
|
|
|
|
|
|
|
|
|
|
|
178 |
""")
|
179 |
with gr.Row():
|
180 |
with gr.Column(scale=3):
|
requirements.txt
CHANGED
@@ -2,5 +2,4 @@ snac
|
|
2 |
python-dotenv
|
3 |
transformers
|
4 |
torch
|
5 |
-
spaces
|
6 |
-
orpheus-cpp==0.0.3
|
|
|
2 |
python-dotenv
|
3 |
transformers
|
4 |
torch
|
5 |
+
spaces
|
|