File size: 13,291 Bytes
b0ef696 61168e4 b0ef696 9826d8b b0ef696 48cacd7 b0ef696 48cacd7 b0ef696 61168e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# import altair as alt
# import numpy as np
# import pandas as pd
# import streamlit as st
# """
# # Welcome to Streamlit!
# Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
# If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
# forums](https://discuss.streamlit.io).
# In the meantime, below is an example of what you can do with just a few lines of code:
# """
# num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
# num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
# indices = np.linspace(0, 1, num_points)
# theta = 2 * np.pi * num_turns * indices
# radius = indices
# x = radius * np.cos(theta)
# y = radius * np.sin(theta)
# df = pd.DataFrame({
# "x": x,
# "y": y,
# "idx": indices,
# "rand": np.random.randn(num_points),
# })
# st.altair_chart(alt.Chart(df, height=700, width=700)
# .mark_point(filled=True)
# .encode(
# x=alt.X("x", axis=None),
# y=alt.Y("y", axis=None),
# color=alt.Color("idx", legend=None, scale=alt.Scale()),
# size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
# ))
import streamlit as st
import numpy as np
import pickle
from typing import Dict, List, Any
import random
from sentence_transformers import SentenceTransformer
from qdrant_client import models, QdrantClient
import emoji as em
import warnings
warnings.filterwarnings('ignore')
# A function to load the emoji dictionary
@st.cache_data(show_spinner=False)
def load_dictionary(file_path: str) -> Dict[str, Dict[str, Any]]:
"""Load the emoji dictionary from a pickle file."""
with open(file_path, 'rb') as file:
emoji_dict = pickle.load(file)
return emoji_dict
# A function to load the sentence encoder model
@st.cache_resource(show_spinner=False)
def load_encoder(model_name: str) -> SentenceTransformer:
"""Load a sentence encoder model from Hugging Face Hub."""
sentence_encoder = SentenceTransformer(model_name)
#st.session_state.sentence_encoder = sentence_encoder
return sentence_encoder
# A function to load the Qdrant vector DB client
@st.cache_resource(show_spinner=False)
def load_qdrant_client(emoji_dict: Dict[str, Dict[str, Any]]) -> QdrantClient:
"""
Load a Qdrant client and populate the database with embeddings.
"""
# Setup the Qdrant client and populate the database
vector_DB_client = QdrantClient(":memory:")
embedding_dict = {
emoji: np.array(metadata['embedding'])
for emoji, metadata in emoji_dict.items()
}
# Remove the embeddings from the dictionary so it can be used
# as payload in Qdrant
for emoji in list(emoji_dict):
del emoji_dict[emoji]['embedding']
embedding_dim = next(iter(embedding_dict.values())).shape[0]
# Create collection in Qdrant
vector_DB_client.create_collection(
collection_name="EMOJIS",
vectors_config=models.VectorParams(
size=embedding_dim,
distance=models.Distance.COSINE
),
)
# Upload points to the collection
vector_DB_client.upload_points(
collection_name="EMOJIS",
points=[
models.PointStruct(
id=idx,
vector=embedding_dict[emoji].tolist(),
payload=emoji_dict[emoji]
)
for idx, emoji in enumerate(emoji_dict)
],
)
#st.session_state.vector_DB_client = vector_DB_client
return vector_DB_client
# for the offline version this code was faster, but resulted in a resource
# limits error from online streamlit app
# it seems that each user has its own session, thus caching does not help
# much here, and the resources are loaded for each user
# def load_resources():
# if ('vector_DB_client' not in st.session_state
# or 'sentence_encoder' not in st.session_state):
# # Load emoji dictionary
# with open('emoji_embeddings_dict.pkl', 'rb') as file:
# emoji_dict = pickle.load(file)
# # Load sentence encoder
# embedding_model = 'paraphrase-multilingual-MiniLM-L12-v2'
# sentence_encoder = SentenceTransformer(embedding_model)
# st.session_state.sentence_encoder = sentence_encoder
# # Setup the Qdrant client and populate the database
# vector_DB_client = QdrantClient(":memory:")
# embedding_dict = {
# emoji: np.array(data['embedding'])
# for emoji, data in emoji_dict.items()
# }
# for emoji in list(emoji_dict):
# del emoji_dict[emoji]['embedding']
# embedding_dim = next(iter(embedding_dict.values())).shape[0]
# # Create collection in Qdrant
# vector_DB_client.create_collection(
# collection_name="EMOJIS",
# vectors_config=models.VectorParams(
# size=embedding_dim,
# distance=models.Distance.COSINE
# ),
# )
# # Upload points to the collection
# vector_DB_client.upload_points(
# collection_name="EMOJIS",
# points=[
# models.PointStruct(
# id=idx,
# vector=embedding_dict[emoji].tolist(),
# payload=emoji_dict[emoji]
# )
# for idx, emoji in enumerate(emoji_dict)
# ],
# )
# st.session_state.vector_DB_client = vector_DB_client
def retrieve_relevant_emojis(
embedding_model: SentenceTransformer,
vector_DB_client: QdrantClient,
query: str) -> List[str]:
"""
Return similar emojis to the query using the sentence encoder and Qdrant.
"""
# Embed the query
query_vector = embedding_model.encode(query).tolist()
hits = vector_DB_client.search(
collection_name="EMOJIS",
query_vector=query_vector,
limit=50,
)
search_emojis = []
# only add to list if it is not already an item in the list
for hit in hits:
if hit.payload['Emoji'] not in search_emojis:
search_emojis.append(hit.payload['Emoji'])
return search_emojis
def render_results(
embedding_model: SentenceTransformer,
vector_DB_client: QdrantClient,
query: str,
emojis_to_render: List[str] = None,) -> None:
"""
Render the search results in the Streamlit app.
"""
# Retrieve relevant emojis
if emojis_to_render is None:
emojis_to_render = retrieve_relevant_emojis(
embedding_model,
vector_DB_client,
query
)
#with st.empty():
# Display results as HTML
#placeholder = st.empty()
if emojis_to_render:
st.markdown(
'<h1 style="font-size: 60px">' + '\t'.join(emojis_to_render) + '</h1>',
unsafe_allow_html=True
)
else:
st.error("No results found.")
def main():
# Examples queries to show
example_queries = [
"Extraterrestrial form",
"Exploration & discovery",
"Happy birthday",
"Love and peace",
"Beyond the stars",
"Great ambition",
"Career growth",
"Flightless bird",
"Tropical vibes",
"Gift of nature",
"In the ocean ",
"Spring awakening",
"Autumn vibes",
"In the garden",
"In the desert",
"Heart gesture",
"Love is in the air",
"In the mountains",
"Extinct species",
"Wonderful world",
"Cool vibes",
"Warm feelings",
"Academic excellence",
"Artistic expression",
"Urban life",
"Rural life",
"Sign language",
"Global communication",
"International cooperation",
"Worldwide connection",
"Digital transformation",
"AI-powered solutions",
"New beginnings",
"Innovation & creativity",
"Scientific discovery",
"Space exploration",
"Sustainable development",
"Climate change",
"Environmental protection",
"Healthy lifestyle",
"Mental health",
"Healthy food",
"Healthy habits",
"Fitness & wellness",
"Mindfulness & meditation",
"Emotional intelligence",
"Personal growth",
"Financial freedom",
"Investment opportunities",
"Economic growth",
"Traditional crafts",
"Folk music",
"Cultural shock",
"Illuminating thoughts",
]
# Load the sentence encoder model
#if 'sentence_encoder' not in st.session_state:
model_name = 'paraphrase-multilingual-MiniLM-L12-v2'
#model_name = 'paraphrase-multilingual-mpnet-base-v2'
sentence_encoder = load_encoder(model_name)
# Load metadata dictionary
embedding_dict = load_dictionary('/home/user/app/src/emoji_embeddings_dict.pkl')
# git a list of emojis
emojis = list(embedding_dict.keys())
# Load the Qdrant client
#if 'vector_DB_client' not in st.session_state:
vector_DB_clinet = load_qdrant_client(embedding_dict)
st.title("Emojeez π ")
# ({languages_link})
languages_link = "https://github.com/badrex/emojeez/blob/main/LANGUAGES"
app_description = f"""
AI-powered, multilingual semantic search for emojis in 50+ languages π
"""
app_example = """
β¨οΈ For example, type β hit the target β or β illuminating β below
"""
st.text(app_description)
#query = st.text_input("Enter your search query", "")
# Using columns to layout the input and button next to each other
with st.container(border=True):
random_query = random.sample(example_queries, 1)[0]
if 'input_text' not in st.session_state:
st.session_state.input_text = random_query #""
instr = f'Enter your text query here ...' # For example `illuminating thoughtsΒ΄
st.caption(app_example)
#col1, col2, col3 = st.columns([3.5, 1.3, 1.3])
col1, col2 = st.columns([3.5, 1])
with col1:
query = st.text_input(
instr,
value="", #st.session_state.input_text,
placeholder=instr,
label_visibility='collapsed',
#label_visibility='visible',
help="exploration discovery",
on_change=lambda: st.session_state.update({
'enter_clicked': True
}
)
#key="query_input"
) #Enter your search query
with col2:
trigger_search = st.button(
label="β¨ Find emojis!",
use_container_width=True
)
# with col3:
# trigger_explore = st.button(
# label="Randomize π²",
# use_container_width=True
# )
# create an empty container to show the resukts
#placeholder = st.empty()
#with st.empty():
# Trigger search if the search button is clicked or user clicked Ebitnter
if trigger_search or (st.session_state.get('enter_clicked') and query):
if query:
render_results(
sentence_encoder,
vector_DB_clinet,
query
)
#st.session_state['enter_clicked'] = False
else:
st.error("Please enter a query of a few keywords to search!")
# # Trigger explore if the Explore button is clicked
# if trigger_explore:
# # get a list of 50 random emojis
# random_emojis = random.sample(emojis, 50)
# render_results(
# sentence_encoder,
# vector_DB_clinet,
# "",
# emojis_to_render=random_emojis
# )
# Footer
footer = """
<style>
.footer {
position: relative;
left: 0;
bottom: 0;
width: 100%;
background-color: transparent;
color: gray;
text-align: center;
padding: 10px;
font-size: 16px;
}
.streamlit-container {
margin-bottom: 10px; /* Adjust this value based on your footer height */
}
</style>
<div class="footer">
Developed with π by <a href="https://badrex.github.io/" target="_blank">Badr Alabsi</a> <br />
π   <a href="https://medium.com/p/f85a36a86f21" target="_blank">Blog Post</a>   |  
π   <a href="https://github.com/badrex/emojeez/blob/main/LANGUAGES" target="_blank">Supported Languages</a>   |  
π   <a href="https://github.com/badrex/emojeez" target="_blank">Code on GitHub</a>
</div>
"""
# Use columns to visually separate the footer from the form content
footer_column = st.columns(1) # Creates a full-width column
with footer_column[0]:
st.markdown(footer, unsafe_allow_html=True)
if __name__ == "__main__":
main()
|