Spaces:
Runtime error
Runtime error
File size: 12,585 Bytes
5fbd25d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
"""
SQLite client for Fooocus API
"""
import logging
import os
import time
import platform
from datetime import datetime
from typing import Optional
import copy
from sqlalchemy import Integer, Float, VARCHAR, Boolean, JSON, Text, create_engine, text
from sqlalchemy.orm import declarative_base, Session, Mapped, mapped_column
Base = declarative_base()
if platform.system().lower() == "windows":
default_sqlite_db_path = os.path.join(
os.path.dirname(__file__), "../database.db"
).replace("\\", "/")
else:
default_sqlite_db_path = os.path.join(os.path.dirname(__file__), "../database.db")
connection_uri = os.environ.get(
"FOOOCUS_DB_CONF", f"sqlite:///{default_sqlite_db_path}"
)
class GenerateRecord(Base):
"""
GenerateRecord
__tablename__ = 'generate_record'
"""
__tablename__ = "generate_record"
task_id: Mapped[str] = mapped_column(VARCHAR(255), nullable=False, primary_key=True)
task_type: Mapped[str] = mapped_column(Text, nullable=False)
task_in_queue_mills: Mapped[int] = mapped_column(Integer, nullable=False, default=0)
task_start_mills: Mapped[int] = mapped_column(Integer, nullable=False, default=0)
task_finish_mills: Mapped[int] = mapped_column(Integer, nullable=False, default=0)
result_url: Mapped[str] = mapped_column(Text, nullable=True)
finish_reason: Mapped[str] = mapped_column(Text, nullable=True)
date_time: Mapped[int] = mapped_column(Integer, nullable=False)
prompt: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
negative_prompt: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
style_selections: Mapped[Optional[list]] = mapped_column(JSON, nullable=True)
performance_selection: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
aspect_ratios_selection: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
base_model_name: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
refiner_model_name: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
refiner_switch: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
loras: Mapped[Optional[list]] = mapped_column(JSON, nullable=True)
image_number: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)
image_seed: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)
sharpness: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
guidance_scale: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
advanced_params: Mapped[Optional[dict]] = mapped_column(JSON, nullable=True)
input_image: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
input_mask: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
image_prompts: Mapped[Optional[list]] = mapped_column(JSON, nullable=True)
inpaint_additional_prompt: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
outpaint_selections: Mapped[Optional[list]] = mapped_column(JSON, nullable=True)
outpaint_distance_left: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)
outpaint_distance_right: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)
outpaint_distance_top: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)
outpaint_distance_bottom: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)
uov_method: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
upscale_value: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
webhook_url: Mapped[Optional[str]] = mapped_column(Text, nullable=True)
require_base64: Mapped[Optional[bool]] = mapped_column(Boolean, nullable=True)
async_process: Mapped[Optional[bool]] = mapped_column(Boolean, nullable=True)
def __repr__(self) -> str:
return f"GenerateRecord(task_id={self.task_id!r}, task_type={self.task_type!r}, \
task_in_queue_mills={self.task_in_queue_mills!r}, task_start_mills={self.task_start_mills!r}, \
result_url={self.result_url!r}, finish_reason={self.finish_reason!r}, date_time={self.date_time!r}, task_finish_mills={self.task_finish_mills!r}, \
prompt={self.prompt!r}, negative_prompt={self.negative_prompt!r}, style_selections={self.style_selections!r}, performance_selection={self.performance_selection!r}, \
aspect_ratios_selection={self.aspect_ratios_selection!r}, base_model_name={self.base_model_name!r}, \
refiner_model_name={self.refiner_model_name!r}, refiner_switch={self.refiner_switch!r}, loras={self.loras!r}, \
image_number={self.image_number!r}, image_seed={self.image_seed!r}, sharpness={self.sharpness!r}, \
guidance_scale={self.guidance_scale!r}, advanced_params={self.advanced_params!r}, input_image={self.input_image!r}, \
input_mask={self.input_mask!r}, image_prompts={self.image_prompts!r}, inpaint_additional_prompt={self.inpaint_additional_prompt!r}, \
outpaint_selections={self.outpaint_selections!r}, outpaint_distance_left={self.outpaint_distance_left!r}, outpaint_distance_right={self.outpaint_distance_right!r}, \
outpaint_distance_top={self.outpaint_distance_top!r}, outpaint_distance_bottom={self.outpaint_distance_bottom!r}, uov_method={self.uov_method!r}, \
upscale_value={self.upscale_value!r}, webhook_url={self.webhook_url!r}, require_base64={self.require_base64!r}, \
async_process={self.async_process!r})"
engine = create_engine(connection_uri)
session = Session(engine)
Base.metadata.create_all(engine, checkfirst=True)
session.close()
def convert_to_dict_list(obj_list: list[object]) -> list[dict]:
"""
Convert a list of objects to a list of dictionaries.
Args:
obj_list:
Returns:
dict_list:
"""
dict_list = []
for obj in obj_list:
# ๅฐๅฏน่ฑกๅฑๆง่ฝฌๅไธบๅญๅ
ธ้ฎๅผๅฏน
dict_obj = {}
for attr, value in vars(obj).items():
if (
not callable(value)
and not attr.startswith("__")
and not attr.startswith("_")
):
dict_obj[attr] = value
task_info = {
"task_id": obj.task_id,
"task_type": obj.task_type,
"task_in_queue_mills": obj.task_in_queue_mills,
"task_start_mills": obj.task_start_mills,
"task_finish_mills": obj.task_finish_mills,
"result_url": obj.result_url,
"finish_reason": obj.finish_reason,
"date_time": datetime.fromtimestamp(obj.date_time).strftime(
"%Y-%m-%d %H:%M:%S"
),
}
del dict_obj["task_id"]
del dict_obj["task_type"]
del dict_obj['task_in_queue_mills']
del dict_obj['task_start_mills']
del dict_obj['task_finish_mills']
del dict_obj["result_url"]
del dict_obj["finish_reason"]
del dict_obj["date_time"]
dict_list.append({"params": dict_obj, "task_info": task_info})
return dict_list
class MySQLAlchemy:
"""
MySQLAlchemy, a toolkit for managing SQLAlchemy connections and sessions.
:param uri: SQLAlchemy connection URI
"""
def __init__(self, uri: str):
# 'mysql+pymysql://{username}:{password}@{host}:{port}/{database}'
self.engine = create_engine(uri)
self.session = Session(self.engine)
self.add_columns_if_not_exists()
def add_columns_if_not_exists(self):
"""
Add new columns but keep old data. This function runs automatically.
"""
table_name = GenerateRecord.__tablename__
# Check if the table exists
result = self.session.execute(
text(f"SELECT name FROM sqlite_master WHERE type='table' AND name='{table_name}';"))
if not result.fetchone():
return
result = self.session.execute(text(f"PRAGMA table_info({table_name});"))
columns = [row[1] for row in result.fetchall()]
try:
if 'task_in_queue_mills' not in columns:
self.session.execute(text(f"ALTER TABLE {table_name} ADD COLUMN task_in_queue_mills INTEGER DEFAULT 0;"))
if 'task_start_mills' not in columns:
self.session.execute(text(f"ALTER TABLE {table_name} ADD COLUMN task_start_mills INTEGER DEFAULT 0;"))
if 'task_finish_mills' not in columns:
self.session.execute(text(f"ALTER TABLE {table_name} ADD COLUMN task_finish_mills INTEGER DEFAULT 0;"))
except Exception as e:
logging.error(f"add new columns failed {e}")
def store_history(self, record: dict) -> None:
"""
Store history to database
:param record:
:return:
"""
serialized_image_prompts = [
(cn_stop, cn_wight, cn_type)
for arr, cn_stop, cn_wight, cn_type in record['image_prompts']
]
record['image_prompts'] = serialized_image_prompts
self.session.add_all([GenerateRecord(**record)])
self.session.commit()
def get_history(
self,
task_id: str | None = None,
page: int = 0,
page_size: int = 20,
order_by: str = "date_time",
) -> list:
"""
Get history from database
:param task_id:
:param page:
:param page_size:
:param order_by:
:return:
"""
if task_id is not None:
res = (
self.session.query(GenerateRecord)
.filter(GenerateRecord.task_id == task_id)
.all()
)
if len(res) == 0:
return []
return convert_to_dict_list(res)
res = (
self.session.query(GenerateRecord)
.order_by(getattr(GenerateRecord, order_by).desc())
.offset(page * page_size)
.limit(page_size)
.all()
)
if len(res) == 0:
return []
return convert_to_dict_list(res)
def delete(self, task_id: str) -> None:
"""
Delete item from database
:param task_id:
:return:
"""
self.session.query(GenerateRecord).filter(GenerateRecord.task_id == task_id).delete()
self.session.commit()
db = MySQLAlchemy(uri=connection_uri)
def req_to_dict(req: dict) -> dict:
"""
Convert request to dictionary
Args:
req:
Returns:
"""
req["loras"] = [{"model_name": lora[0], "weight": lora[1]} for lora in req["loras"]]
# req["advanced_params"] = dict(zip(adv_params_keys, req["advanced_params"]))
req["image_prompts"] = [
{"cn_img": "", "cn_stop": image[1], "cn_weight": image[2], "cn_type": image[3]}
for image in req["image_prompts"]
]
del req["inpaint_input_image"]
del req["uov_input_image"]
return req
def add_history(
params: dict, task_info: dict, result_url: str, finish_reason: str
) -> None:
"""
Store history to database
Args:
params:
task_info:
result_url:
finish_reason:
Returns:
"""
adv = copy.deepcopy(params["advanced_params"])
params["advanced_params"] = adv.__dict__
params["date_time"] = int(time.time())
for k, v in task_info.items():
params[k] = v
params["result_url"] = result_url
params["finish_reason"] = finish_reason
del params["enhance_input_image"]
del params["enhance_checkbox"]
del params["enhance_uov_method"]
del params["enhance_uov_processing_order"]
del params["enhance_uov_prompt_type"]
del params["save_final_enhanced_image_only"]
del params["enhance_ctrlnets"]
del params["inpaint_input_image"]
del params["uov_input_image"]
del params["save_extension"]
del params["save_meta"]
del params["save_name"]
del params["meta_scheme"]
del params["read_wildcards_in_order"]
del params["current_tab"]
db.store_history(params)
def query_history(
task_id: str = None,
page: int = 0,
page_size: int = 20,
order_by: str = "date_time"
) -> list:
"""
Query history from database
Args:
task_id:
page:
page_size:
order_by:
Returns:
"""
return db.get_history(
task_id=task_id, page=page, page_size=page_size, order_by=order_by
)
def delete_item(item_id: str) -> None:
"""
Delete item from database
Args:
item_id:
Returns:
"""
db.delete(item_id)
|