File size: 31,513 Bytes
5fbd25d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""
requests models for v1 endpoints
"""
from typing import List
from fastapi.params import File
from fastapi import (
    UploadFile,
    Form
)
from fooocusapi.models.common.requests import (
    CommonRequest,
    advanced_params_parser
)
from fooocusapi.models.common.base import (
    EnhanceCtrlNets, ImagePrompt,
    ControlNetType,
    MaskModel, OutpaintExpansion,
    UpscaleOrVaryMethod,
    PerformanceSelection
)

from fooocusapi.models.common.base import (
    style_selection_parser,
    lora_parser,
    outpaint_selections_parser,
    image_prompt_parser,
    default_loras_json
)

from fooocusapi.configs.default import (
    default_prompt_negative,
    default_aspect_ratio,
    default_base_model_name,
    default_refiner_model_name,
    default_refiner_switch,
    default_cfg_scale,
    default_styles,
)


class ImgUpscaleOrVaryRequest(CommonRequest):
    """
    Request for image upscale or variation
    Attributes:
        input_image: Input image
        uov_method: Upscale or variation method
        upscale_value: upscale value
    Functions:
        as_form: Convert request to form data
    """
    input_image: UploadFile
    uov_method: UpscaleOrVaryMethod
    upscale_value: float | None

    @classmethod
    def as_form(
            cls,
            input_image: UploadFile = Form(description="Init image for upscale or outpaint"),
            uov_method: UpscaleOrVaryMethod = Form(),
            upscale_value: float | None = Form(None, description="Upscale custom value, None for default value", ge=1.0, le=5.0),
            prompt: str = Form(''),
            negative_prompt: str = Form(default_prompt_negative),
            style_selections: List[str] = Form(default_styles, description="Fooocus style selections, separated by comma"),
            performance_selection: PerformanceSelection = Form(PerformanceSelection.speed, description="Performance Selection, one of 'Speed','Quality','Extreme Speed'"),
            aspect_ratios_selection: str = Form(default_aspect_ratio, description="Aspect Ratios Selection, default 1152*896"),
            image_number: int = Form(default=1, description="Image number", ge=1, le=32),
            image_seed: int = Form(default=-1, description="Seed to generate image, -1 for random"),
            sharpness: float = Form(default=2.0, ge=0.0, le=30.0),
            guidance_scale: float = Form(default=default_cfg_scale, ge=1.0, le=30.0),
            base_model_name: str = Form(default_base_model_name, description="checkpoint file name"),
            refiner_model_name: str = Form(default_refiner_model_name, description="refiner file name"),
            refiner_switch: float = Form(default=default_refiner_switch, description="Refiner Switch At", ge=0.1, le=1.0),
            loras: str | None = Form(default=default_loras_json, description='Lora config in JSON. Format as [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}]'),
            advanced_params: str | None = Form(default=None, description="Advanced parameters in JSON"),
            save_meta: bool = Form(default=False, description="Save metadata to image"),
            meta_scheme: str = Form(default='fooocus', description="Metadata scheme, one of 'fooocus', 'a111'"),
            save_extension: str = Form(default="png", description="Save extension, png, jpg or webp"),
            save_name: str = Form(default="", description="Save name, empty for auto generate"),
            require_base64: bool = Form(default=False, description="Return base64 data of generated image"),
            read_wildcards_in_order: bool = Form(default=False, description="Read wildcards in order"),
            async_process: bool = Form(default=False, description="Set to true will run async and return job info for retrieve generation result later"),
            webhook_url: str = Form(default="", description="Webhook url for generation result"),
    ):
        style_selection_arr = style_selection_parser(style_selections)
        loras_model = lora_parser(loras)
        advanced_params_obj = advanced_params_parser(advanced_params)

        return cls(
            input_image=input_image, uov_method=uov_method, upscale_value=upscale_value,
            prompt=prompt, negative_prompt=negative_prompt, style_selections=style_selection_arr,
            performance_selection=performance_selection, aspect_ratios_selection=aspect_ratios_selection,
            image_number=image_number, image_seed=image_seed, sharpness=sharpness, guidance_scale=guidance_scale,
            base_model_name=base_model_name, refiner_model_name=refiner_model_name, refiner_switch=refiner_switch,
            loras=loras_model, advanced_params=advanced_params_obj, save_meta=save_meta, meta_scheme=meta_scheme,
            save_extension=save_extension, save_name=save_name, require_base64=require_base64,
            read_wildcards_in_order=read_wildcards_in_order, async_process=async_process, webhook_url=webhook_url)


class ImgInpaintOrOutpaintRequest(CommonRequest):
    """
    Image Inpaint or Outpaint Request
    """
    input_image: UploadFile | None
    input_mask: UploadFile | None
    inpaint_additional_prompt: str | None
    outpaint_selections: List[OutpaintExpansion]
    outpaint_distance_left: int
    outpaint_distance_right: int
    outpaint_distance_top: int
    outpaint_distance_bottom: int

    @classmethod
    def as_form(
            cls,
            input_image: UploadFile = Form(description="Init image for inpaint or outpaint"),
            input_mask: UploadFile = Form(File(None), description="Inpaint or outpaint mask"),
            inpaint_additional_prompt: str | None = Form("", description="Describe what you want to inpaint"),
            outpaint_selections: List[str] = Form([], description="Outpaint expansion selections, literal 'Left', 'Right', 'Top', 'Bottom' separated by comma"),
            outpaint_distance_left: int = Form(default=0, description="Set outpaint left distance, -1 for default"),
            outpaint_distance_right: int = Form(default=0, description="Set outpaint right distance, -1 for default"),
            outpaint_distance_top: int = Form(default=0, description="Set outpaint top distance, -1 for default"),
            outpaint_distance_bottom: int = Form(default=0, description="Set outpaint bottom distance, -1 for default"),
            prompt: str = Form(''),
            negative_prompt: str = Form(default_prompt_negative),
            style_selections: List[str] = Form(default_styles, description="Fooocus style selections, separated by comma"),
            performance_selection: PerformanceSelection = Form(PerformanceSelection.speed, description="Performance Selection, one of 'Speed','Quality','Extreme Speed'"),
            aspect_ratios_selection: str = Form(default_aspect_ratio, description="Aspect Ratios Selection, default 1152*896"),
            image_number: int = Form(default=1, description="Image number", ge=1, le=32),
            image_seed: int = Form(default=-1, description="Seed to generate image, -1 for random"),
            sharpness: float = Form(default=2.0, ge=0.0, le=30.0),
            guidance_scale: float = Form(default=default_cfg_scale, ge=1.0, le=30.0),
            base_model_name: str = Form(default_base_model_name),
            refiner_model_name: str = Form(default_refiner_model_name),
            refiner_switch: float = Form(default=default_refiner_switch, description="Refiner Switch At", ge=0.1, le=1.0),
            loras: str | None = Form(default=default_loras_json, description='Lora config in JSON. Format as [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}]'),
            advanced_params: str | None = Form(default=None, description="Advanced parameters in JSON"),
            save_meta: bool = Form(default=False, description="Save metadata to image"),
            meta_scheme: str = Form(default='fooocus', description="Metadata scheme, one of 'fooocus', 'a111'"),
            save_extension: str = Form(default="png", description="Save extension, png, jpg or webp"),
            save_name: str = Form(default="", description="Save name, empty for auto generate"),
            require_base64: bool = Form(default=False, description="Return base64 data of generated image"),
            read_wildcards_in_order: bool = Form(default=False, description="Read wildcards in order"),
            async_process: bool = Form(default=False, description="Set to true will run async and return job info for retrieve generation result later"),
            webhook_url: str = Form(default="", description="Webhook url for generation result"),
    ):
        if isinstance(input_mask, File):
            input_mask = None

        outpaint_selections_arr = outpaint_selections_parser(outpaint_selections)
        style_selection_arr = style_selection_parser(style_selections)
        loras_model = lora_parser(loras)
        advanced_params_obj = advanced_params_parser(advanced_params)

        return cls(
            input_image=input_image, input_mask=input_mask, inpaint_additional_prompt=inpaint_additional_prompt,
            outpaint_selections=outpaint_selections_arr, outpaint_distance_left=outpaint_distance_left,
            outpaint_distance_right=outpaint_distance_right, outpaint_distance_top=outpaint_distance_top,
            outpaint_distance_bottom=outpaint_distance_bottom, prompt=prompt, negative_prompt=negative_prompt, style_selections=style_selection_arr,
            performance_selection=performance_selection, aspect_ratios_selection=aspect_ratios_selection,
            image_number=image_number, image_seed=image_seed, sharpness=sharpness, guidance_scale=guidance_scale,
            base_model_name=base_model_name, refiner_model_name=refiner_model_name, refiner_switch=refiner_switch,
            loras=loras_model, advanced_params=advanced_params_obj, save_meta=save_meta, meta_scheme=meta_scheme,
            save_extension=save_extension, save_name=save_name, require_base64=require_base64,
            read_wildcards_in_order=read_wildcards_in_order, async_process=async_process, webhook_url=webhook_url)


class ImgPromptRequest(ImgInpaintOrOutpaintRequest):
    """
    Image Prompt Request
    """
    image_prompts: List[ImagePrompt]

    @classmethod
    def as_form(
            cls,
            input_image: UploadFile = Form(File(None), description="Init image for inpaint or outpaint"),
            input_mask: UploadFile = Form(File(None), description="Inpaint or outpaint mask"),
            inpaint_additional_prompt: str | None = Form(default='', description="Describe what you want to inpaint"),
            outpaint_selections: List[str] = Form([], description="Outpaint expansion selections, literal 'Left', 'Right', 'Top', 'Bottom' separated by comma"),
            outpaint_distance_left: int = Form(default=0, description="Set outpaint left distance, 0 for default"),
            outpaint_distance_right: int = Form(default=0, description="Set outpaint right distance, 0 for default"),
            outpaint_distance_top: int = Form(default=0, description="Set outpaint top distance, 0 for default"),
            outpaint_distance_bottom: int = Form(default=0, description="Set outpaint bottom distance, 0 for default"),
            cn_img1: UploadFile = Form(File(None), description="Input image for image prompt"),
            cn_stop1: float | None = Form(
                default=None, ge=0, le=1, description="Stop at for image prompt, None for default value"),
            cn_weight1: float | None = Form(
                default=None, ge=0, le=2, description="Weight for image prompt, None for default value"),
            cn_type1: ControlNetType = Form(
                default=ControlNetType.cn_ip, description="ControlNet type for image prompt"),
            cn_img2: UploadFile = Form(
                File(None), description="Input image for image prompt"),
            cn_stop2: float | None = Form(
                default=None, ge=0, le=1, description="Stop at for image prompt, None for default value"),
            cn_weight2: float | None = Form(
                default=None, ge=0, le=2, description="Weight for image prompt, None for default value"),
            cn_type2: ControlNetType = Form(
                default=ControlNetType.cn_ip, description="ControlNet type for image prompt"),
            cn_img3: UploadFile = Form(
                File(None), description="Input image for image prompt"),
            cn_stop3: float | None = Form(
                default=None, ge=0, le=1, description="Stop at for image prompt, None for default value"),
            cn_weight3: float | None = Form(
                default=None, ge=0, le=2, description="Weight for image prompt, None for default value"),
            cn_type3: ControlNetType = Form(
                default=ControlNetType.cn_ip, description="ControlNet type for image prompt"),
            cn_img4: UploadFile = Form(
                File(None), description="Input image for image prompt"),
            cn_stop4: float | None = Form(
                default=None, ge=0, le=1, description="Stop at for image prompt, None for default value"),
            cn_weight4: float | None = Form(
                default=None, ge=0, le=2, description="Weight for image prompt, None for default value"),
            cn_type4: ControlNetType = Form(
                default=ControlNetType.cn_ip, description="ControlNet type for image prompt"),

            prompt: str = Form(''),
            negative_prompt: str = Form(default_prompt_negative),
            style_selections: List[str] = Form(default_styles, description="Fooocus style selections, separated by comma"),
            performance_selection: PerformanceSelection = Form(PerformanceSelection.speed),
            aspect_ratios_selection: str = Form(default_aspect_ratio),
            image_number: int = Form(default=1, description="Image number", ge=1, le=32),
            image_seed: int = Form(default=-1, description="Seed to generate image, -1 for random"),
            sharpness: float = Form(default=2.0, ge=0.0, le=30.0),
            guidance_scale: float = Form(default=default_cfg_scale, ge=1.0, le=30.0),
            base_model_name: str = Form(default_base_model_name),
            refiner_model_name: str = Form(default_refiner_model_name),
            refiner_switch: float = Form(default=default_refiner_switch, description="Refiner Switch At", ge=0.1, le=1.0),
            loras: str | None = Form(default=default_loras_json, description='Lora config in JSON. Format as [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}]'),
            advanced_params: str | None = Form(default=None, description="Advanced parameters in JSON"),
            save_meta: bool = Form(default=False, description="Save metadata to image"),
            meta_scheme: str = Form(default='fooocus', description="Metadata scheme, one of 'fooocus', 'a111'"),
            save_extension: str = Form(default="png", description="Save extension, png, jpg or webp"),
            save_name: str = Form(default="", description="Save name, empty for auto generate"),
            require_base64: bool = Form(default=False, description="Return base64 data of generated image"),
            read_wildcards_in_order: bool = Form(default=False, description="Read wildcards in order"),
            async_process: bool = Form(default=False, description="Set to true will run async and return job info for retrieve generation result later"),
            webhook_url: str = Form(default="", description="Webhook url for generation result"),
    ):
        if isinstance(input_image, File):
            input_image = None
        if isinstance(input_mask, File):
            input_mask = None
        if isinstance(cn_img1, File):
            cn_img1 = None
        if isinstance(cn_img2, File):
            cn_img2 = None
        if isinstance(cn_img3, File):
            cn_img3 = None
        if isinstance(cn_img4, File):
            cn_img4 = None

        outpaint_selections_arr = outpaint_selections_parser(outpaint_selections)

        image_prompt_config = [
            (cn_img1, cn_stop1, cn_weight1, cn_type1),
            (cn_img2, cn_stop2, cn_weight2, cn_type2),
            (cn_img3, cn_stop3, cn_weight3, cn_type3),
            (cn_img4, cn_stop4, cn_weight4, cn_type4)]
        image_prompts = image_prompt_parser(image_prompt_config)
        style_selection_arr = style_selection_parser(style_selections)
        loras_model = lora_parser(loras)
        advanced_params_obj = advanced_params_parser(advanced_params)

        return cls(
            input_image=input_image, input_mask=input_mask, inpaint_additional_prompt=inpaint_additional_prompt, outpaint_selections=outpaint_selections_arr,
            outpaint_distance_left=outpaint_distance_left, outpaint_distance_right=outpaint_distance_right, outpaint_distance_top=outpaint_distance_top, outpaint_distance_bottom=outpaint_distance_bottom,
            image_prompts=image_prompts, prompt=prompt, negative_prompt=negative_prompt, style_selections=style_selection_arr,
            performance_selection=performance_selection, aspect_ratios_selection=aspect_ratios_selection,
            image_number=image_number, image_seed=image_seed, sharpness=sharpness, guidance_scale=guidance_scale,
            base_model_name=base_model_name, refiner_model_name=refiner_model_name, refiner_switch=refiner_switch,
            loras=loras_model, advanced_params=advanced_params_obj, save_meta=save_meta, meta_scheme=meta_scheme,
            save_extension=save_extension, save_name=save_name, require_base64=require_base64,
            read_wildcards_in_order=read_wildcards_in_order, async_process=async_process, webhook_url=webhook_url)


class ImageEnhanceRequest(CommonRequest):
    """
    Image Enhance Request
    """
    enhance_input_image: UploadFile = Form(File(None), description="Input image for enhance")
    enhance_checkbox: bool = Form(default=True, description="Enhance checkbox")
    enhance_uov_method: UpscaleOrVaryMethod = Form(default=UpscaleOrVaryMethod.strong_variation, description="Upscale or vary method")
    enhance_uov_processing_order: str = Form(default="Before First Enhancement", description="Upscale or vary processing order")
    enhance_uov_prompt_type: str = Form(default="Original Prompts", description="Upscale or vary prompt type")
    save_final_enhanced_image_only: bool = Form(True, description="Save Final Enhanced Image Only")
    enhance_ctrlnets: List[EnhanceCtrlNets]

    @classmethod
    def as_form(
            cls,
            enhance_input_image: UploadFile = Form(File(None), description="Input image for enhance"),
            enhance_checkbox: bool = Form(default=True, description="Enhance checkbox"),
            enhance_uov_method: UpscaleOrVaryMethod = Form(default=UpscaleOrVaryMethod.strong_variation, description="Upscale or vary method"),
            enhance_uov_processing_order: str = Form(default="Before First Enhancement", description="Upscale or vary processing order"),
            enhance_uov_prompt_type: str = Form(default="Original Prompts", description="Upscale or vary prompt type"),

            enhance_enabled_1: bool = Form(default=False, description="Enhance checkbox 1"),
            enhance_mask_dino_prompt_1: str = Form(default="", description="Mask dino prompt"),
            enhance_prompt_1: str = Form(default="", description="Prompt"),
            enhance_negative_prompt_1: str = Form(default="", description="Negative prompt"),
            enhance_mask_model_1: MaskModel = Form(default=MaskModel.sam, description="Mask model"),
            enhance_mask_cloth_category_1: str = Form(default="full", description="Mask cloth category"),
            enhance_mask_sam_model_1: str = Form(default="vit_b", description="one of vit_b vit_h vit_l"),
            enhance_mask_text_threshold_1: float = Form(default=0.25, ge=0, le=1, description="Mask text threshold"),
            enhance_mask_box_threshold_1: float = Form(default=0.3, ge=0, le=1, description="Mask box threshold"),
            enhance_mask_sam_max_detections_1: int = Form(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all"),
            enhance_inpaint_disable_initial_latent_1: bool = Form(default=False, description="Inpaint disable initial latent"),
            enhance_inpaint_engine_1: str = Form(default="v2.6", description="Inpaint engine"),
            enhance_inpaint_strength_1: float = Form(default=1, ge=0, le=1, description="Inpaint strength"),
            enhance_inpaint_respective_field_1: float = Form(default=0.618, ge=0, le=1, description="Inpaint respective field"),
            enhance_inpaint_erode_or_dilate_1: float = Form(default=0, ge=-64, le=64, description="Inpaint erode or dilate"),
            enhance_mask_invert_1: bool = Form(default=False, description="Inpaint mask invert"),

            enhance_enabled_2: bool = Form(default=False, description="Enhance checkbox 2"),
            enhance_mask_dino_prompt_2: str = Form(default="", description="Mask dino prompt"),
            enhance_prompt_2: str = Form(default="", description="Prompt"),
            enhance_negative_prompt_2: str = Form(default="", description="Negative prompt"),
            enhance_mask_model_2: MaskModel = Form(default=MaskModel.sam, description="Mask model"),
            enhance_mask_cloth_category_2: str = Form(default="full", description="Mask cloth category"),
            enhance_mask_sam_model_2: str = Form(default="vit_b", description="one of vit_b vit_h vit_l"),
            enhance_mask_text_threshold_2: float = Form(default=0.25, ge=0, le=1, description="Mask text threshold"),
            enhance_mask_box_threshold_2: float = Form(default=0.3, ge=0, le=1, description="Mask box threshold"),
            enhance_mask_sam_max_detections_2: int = Form(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all"),
            enhance_inpaint_disable_initial_latent_2: bool = Form(default=False, description="Inpaint disable initial latent"),
            enhance_inpaint_engine_2: str = Form(default="v2.6", description="Inpaint engine"),
            enhance_inpaint_strength_2: float = Form(default=1, ge=0, le=1, description="Inpaint strength"),
            enhance_inpaint_respective_field_2: float = Form(default=0.618, ge=0, le=1, description="Inpaint respective field"),
            enhance_inpaint_erode_or_dilate_2: float = Form(default=0, ge=-64, le=64, description="Inpaint erode or dilate"),
            enhance_mask_invert_2: bool = Form(default=False, description="Inpaint mask invert"),

            enhance_enabled_3: bool = Form(default=False, description="Enhance checkbox 3"),
            enhance_mask_dino_prompt_3: str = Form(default="", description="Mask dino prompt"),
            enhance_prompt_3: str = Form(default="", description="Prompt"),
            enhance_negative_prompt_3: str = Form(default="", description="Negative prompt"),
            enhance_mask_model_3: MaskModel = Form(default=MaskModel.sam, description="Mask model"),
            enhance_mask_cloth_category_3: str = Form(default="full", description="Mask cloth category"),
            enhance_mask_sam_model_3: str = Form(default="vit_b", description="one of vit_b vit_h vit_l"),
            enhance_mask_text_threshold_3: float = Form(default=0.25, ge=0, le=1, description="Mask text threshold"),
            enhance_mask_box_threshold_3: float = Form(default=0.3, ge=0, le=1, description="Mask box threshold"),
            enhance_mask_sam_max_detections_3: int = Form(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all"),
            enhance_inpaint_disable_initial_latent_3: bool = Form(default=False, description="Inpaint disable initial latent"),
            enhance_inpaint_engine_3: str = Form(default="v2.6", description="Inpaint engine"),
            enhance_inpaint_strength_3: float = Form(default=1, ge=0, le=1, description="Inpaint strength"),
            enhance_inpaint_respective_field_3: float = Form(default=0.618, ge=0, le=1, description="Inpaint respective field"),
            enhance_inpaint_erode_or_dilate_3: float = Form(default=0, ge=-64, le=64, description="Inpaint erode or dilate"),
            enhance_mask_invert_3: bool = Form(default=False, description="Inpaint mask invert"),

            prompt: str = Form(''),
            negative_prompt: str = Form(default_prompt_negative),
            style_selections: List[str] = Form(default_styles, description="Fooocus style selections, separated by comma"),
            performance_selection: PerformanceSelection = Form(PerformanceSelection.speed),
            aspect_ratios_selection: str = Form(default_aspect_ratio),
            image_number: int = Form(default=1, description="Image number", ge=1, le=32),
            image_seed: int = Form(default=-1, description="Seed to generate image, -1 for random"),
            sharpness: float = Form(default=2.0, ge=0.0, le=30.0),
            guidance_scale: float = Form(default=default_cfg_scale, ge=1.0, le=30.0),
            base_model_name: str = Form(default_base_model_name),
            refiner_model_name: str = Form(default_refiner_model_name),
            refiner_switch: float = Form(default=default_refiner_switch, description="Refiner Switch At", ge=0.1, le=1.0),
            loras: str | None = Form(default=default_loras_json, description='Lora config in JSON. Format as [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}]'),
            advanced_params: str | None = Form(default=None, description="Advanced parameters in JSON"),
            save_meta: bool = Form(default=False, description="Save metadata to image"),
            meta_scheme: str = Form(default='fooocus', description="Metadata scheme, one of 'fooocus', 'a111'"),
            save_extension: str = Form(default="png", description="Save extension, png, jpg or webp"),
            save_name: str = Form(default="", description="Save name, empty for auto generate"),
            require_base64: bool = Form(default=False, description="Return base64 data of generated image"),
            read_wildcards_in_order: bool = Form(default=False, description="Read wildcards in order"),
            async_process: bool = Form(default=False, description="Set to true will run async and return job info for retrieve generation result later"),
            webhook_url: str = Form(default="", description="Webhook url for generation result")
    ):
        style_selection_arr = style_selection_parser(style_selections)
        loras_model = lora_parser(loras)
        advanced_params_obj = advanced_params_parser(advanced_params)
        enhance_ctrlnets = [
            EnhanceCtrlNets(
                enhance_enabled=enhance_enabled_1,
                enhance_mask_dino_prompt=enhance_mask_dino_prompt_1,
                enhance_prompt=enhance_prompt_1,
                enhance_negative_prompt=enhance_negative_prompt_1,
                enhance_mask_model=enhance_mask_model_1,
                enhance_mask_cloth_category=enhance_mask_cloth_category_1,
                enhance_mask_sam_model=enhance_mask_sam_model_1,
                enhance_mask_text_threshold=enhance_mask_text_threshold_1,
                enhance_mask_box_threshold=enhance_mask_box_threshold_1,
                enhance_mask_sam_max_detections=enhance_mask_sam_max_detections_1,
                enhance_inpaint_disable_initial_latent=enhance_inpaint_disable_initial_latent_1,
                enhance_inpaint_engine=enhance_inpaint_engine_1,
                enhance_inpaint_strength=enhance_inpaint_strength_1,
                enhance_inpaint_respective_field=enhance_inpaint_respective_field_1,
                enhance_inpaint_erode_or_dilate=enhance_inpaint_erode_or_dilate_1,
                enhance_mask_invert=enhance_mask_invert_1),
            EnhanceCtrlNets(
                enhance_enabled=enhance_enabled_2,
                enhance_mask_dino_prompt=enhance_mask_dino_prompt_2,
                enhance_prompt=enhance_prompt_2,
                enhance_negative_prompt=enhance_negative_prompt_2,
                enhance_mask_model=enhance_mask_model_2,
                enhance_mask_cloth_category=enhance_mask_cloth_category_2,
                enhance_mask_sam_model=enhance_mask_sam_model_2,
                enhance_mask_text_threshold=enhance_mask_text_threshold_2,
                enhance_mask_box_threshold=enhance_mask_box_threshold_2,
                enhance_mask_sam_max_detections=enhance_mask_sam_max_detections_2,
                enhance_inpaint_disable_initial_latent=enhance_inpaint_disable_initial_latent_2,
                enhance_inpaint_engine=enhance_inpaint_engine_2,
                enhance_inpaint_strength=enhance_inpaint_strength_2,
                enhance_inpaint_respective_field=enhance_inpaint_respective_field_2,
                enhance_inpaint_erode_or_dilate=enhance_inpaint_erode_or_dilate_2,
                enhance_mask_invert=enhance_mask_invert_2),
            EnhanceCtrlNets(
                enhance_enabled=enhance_enabled_3,
                enhance_mask_dino_prompt=enhance_mask_dino_prompt_3,
                enhance_prompt=enhance_prompt_3,
                enhance_negative_prompt=enhance_negative_prompt_3,
                enhance_mask_model=enhance_mask_model_3,
                enhance_mask_cloth_category=enhance_mask_cloth_category_3,
                enhance_mask_sam_model=enhance_mask_sam_model_3,
                enhance_mask_text_threshold=enhance_mask_text_threshold_3,
                enhance_mask_box_threshold=enhance_mask_box_threshold_3,
                enhance_mask_sam_max_detections=enhance_mask_sam_max_detections_3,
                enhance_inpaint_disable_initial_latent=enhance_inpaint_disable_initial_latent_3,
                enhance_inpaint_engine=enhance_inpaint_engine_3,
                enhance_inpaint_strength=enhance_inpaint_strength_3,
                enhance_inpaint_respective_field=enhance_inpaint_respective_field_3,
                enhance_inpaint_erode_or_dilate=enhance_inpaint_erode_or_dilate_3,
                enhance_mask_invert=enhance_mask_invert_3
            ),
        ]
        return cls(
            enhance_input_image=enhance_input_image,
            enhance_checkbox=enhance_checkbox,
            enhance_uov_method=enhance_uov_method,
            enhance_uov_processing_order=enhance_uov_processing_order,
            enhance_uov_prompt_type=enhance_uov_prompt_type,
            enhance_ctrlnets=enhance_ctrlnets,
            prompt=prompt, negative_prompt=negative_prompt,
            style_selections=style_selection_arr,
            performance_selection=performance_selection,
            aspect_ratios_selection=aspect_ratios_selection,
            image_number=image_number,
            image_seed=image_seed,
            sharpness=sharpness,
            guidance_scale=guidance_scale,
            base_model_name=base_model_name,
            refiner_model_name=refiner_model_name,
            refiner_switch=refiner_switch,
            loras=loras_model, advanced_params=advanced_params_obj,
            save_meta=save_meta, meta_scheme=meta_scheme,
            save_extension=save_extension, save_name=save_name,
            require_base64=require_base64,
            read_wildcards_in_order=read_wildcards_in_order,
            async_process=async_process, webhook_url=webhook_url)