Sanket17's picture
added all files
5fbd25d
raw
history blame
8.49 kB
"""Common models"""
from typing import List, Tuple
from enum import Enum
from fastapi import UploadFile
from fastapi.exceptions import RequestValidationError
from pydantic import (
ValidationError,
ConfigDict,
BaseModel,
TypeAdapter,
Field
)
from pydantic_core import InitErrorDetails
from fooocusapi.configs.default import default_loras
class PerformanceSelection(str, Enum):
"""Performance selection"""
speed = 'Speed'
quality = 'Quality'
extreme_speed = 'Extreme Speed'
lightning = 'Lightning'
hyper_sd = 'Hyper-SD'
class Lora(BaseModel):
"""Common params lora model"""
enabled: bool
model_name: str
weight: float = Field(default=0.5, ge=-2, le=2)
model_config = ConfigDict(
protected_namespaces=('protect_me_', 'also_protect_')
)
LoraList = TypeAdapter(List[Lora])
default_loras_model = []
for lora in default_loras:
if lora[0] != 'None':
default_loras_model.append(
Lora(
enabled=lora[0],
model_name=lora[1],
weight=lora[2])
)
default_loras_json = LoraList.dump_json(default_loras_model)
class MaskModel(str, Enum):
"""Inpaint mask model"""
u2net = "u2net"
u2netp = "u2netp"
u2net_human_seg = "u2net_human_seg"
u2net_cloth_seg = "u2net_cloth_seg"
silueta = "silueta"
isnet_general_use = "isnet-general-use"
isnet_anime = "isnet-anime"
sam = "sam"
class EnhanceCtrlNets(BaseModel):
enhance_enabled: bool = Field(default=False, description="Enable enhance control nets")
enhance_mask_dino_prompt: str = Field(default="face", description="Mask dino prompt, this is necessary, error if no value. usual values: face, eye, mouth, hair, hand, body")
enhance_prompt: str = Field(default="", description="Prompt")
enhance_negative_prompt: str = Field(default="", description="Negative prompt")
enhance_mask_model: MaskModel = Field(default=MaskModel.sam, description="Mask model")
enhance_mask_cloth_category: str = Field(default="full", description="Mask cloth category")
enhance_mask_sam_model: str = Field(default="vit_b", description="one of vit_b vit_h vit_l")
enhance_mask_text_threshold: float = Field(default=0.25, ge=0, le=1, description="Mask text threshold")
enhance_mask_box_threshold: float = Field(default=0.3, ge=0, le=1, description="Mask box threshold")
enhance_mask_sam_max_detections: int = Field(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all")
enhance_inpaint_disable_initial_latent: bool = Field(default=False, description="Inpaint disable initial latent")
enhance_inpaint_engine: str = Field(default="v2.6", description="Inpaint engine")
enhance_inpaint_strength: float = Field(default=1, ge=0, le=1, description="Inpaint strength")
enhance_inpaint_respective_field: float = Field(default=0.618, ge=0, le=1, description="Inpaint respective field")
enhance_inpaint_erode_or_dilate: float = Field(default=0, ge=-64, le=64, description="Inpaint erode or dilate")
enhance_mask_invert: bool = Field(default=False, description="Inpaint mask invert")
class GenerateMaskRequest(BaseModel):
"""
generate mask request
"""
image: str = Field(description="Image url or base64")
mask_model: MaskModel = Field(default=MaskModel.isnet_general_use, description="Mask model")
cloth_category: str = Field(default="full", description="Mask cloth category")
dino_prompt_text: str = Field(default="", description="Detection prompt, Use singular whenever possible")
sam_model: str = Field(default="vit_b", description="one of vit_b vit_h vit_l")
box_threshold: float = Field(default=0.3, ge=0, le=1, description="Mask box threshold")
text_threshold: float = Field(default=0.25, ge=0, le=1, description="Mask text threshold")
sam_max_detections: int = Field(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all")
dino_erode_or_dilate: float = Field(default=0, ge=-64, le=64, description="Mask dino erode or dilate")
dino_debug: bool = Field(default=False, description="Mask dino debug")
class UpscaleOrVaryMethod(str, Enum):
"""Upscale or Vary method"""
disabled = 'Disabled'
subtle_variation = 'Vary (Subtle)'
strong_variation = 'Vary (Strong)'
upscale_15 = 'Upscale (1.5x)'
upscale_2 = 'Upscale (2x)'
upscale_fast = 'Upscale (Fast 2x)'
upscale_custom = 'Upscale (Custom)'
class OutpaintExpansion(str, Enum):
"""Outpaint expansion"""
left = 'Left'
right = 'Right'
top = 'Top'
bottom = 'Bottom'
class ControlNetType(str, Enum):
"""ControlNet Type"""
cn_ip = "ImagePrompt"
cn_ip_face = "FaceSwap"
cn_canny = "PyraCanny"
cn_cpds = "CPDS"
class ImagePrompt(BaseModel):
"""Common params object ImagePrompt"""
cn_img: UploadFile | None = Field(default=None)
cn_stop: float | None = Field(default=0.5, ge=0, le=1)
cn_weight: float | None = Field(default=0.6, ge=0, le=2, description="None for default value")
cn_type: ControlNetType = Field(default=ControlNetType.cn_ip)
class DescribeImageType(str, Enum):
"""Image type for image to prompt"""
photo = 'Photo'
anime = 'Anime'
class ImageMetaScheme(str, Enum):
"""Scheme for save image meta
Attributes:
Fooocus: json format
A111: string
"""
Fooocus = 'fooocus'
A111 = 'a111'
def style_selection_parser(style_selections: str | List[str]) -> List[str]:
"""
Parse style selections, Convert to list
Args:
style_selections: str, comma separated Fooocus style selections
e.g. Fooocus V2, Fooocus Enhance, Fooocus Sharp
Returns:
List[str]
"""
style_selection_arr: List[str] = []
if style_selections is None or len(style_selections) == 0:
return []
for part in style_selections:
if len(part) > 0:
for s in part.split(','):
style = s.strip()
style_selection_arr.append(style)
return style_selection_arr
def lora_parser(loras: str) -> List[Lora]:
"""
Parse lora config, Convert to list
Args:
loras: a json string for loras
Returns:
List[Lora]
"""
loras_model: List[Lora] = []
if loras is None or len(loras) == 0:
return loras_model
try:
loras_model = LoraList.validate_json(loras)
return loras_model
except ValidationError as ve:
errs = ve.errors()
raise RequestValidationError from errs
def outpaint_selections_parser(outpaint_selections: str | list[str]) -> List[OutpaintExpansion]:
"""
Parse outpaint selections, Convert to list
Args:
outpaint_selections: str, comma separated Left, Right, Top, Bottom
e.g. Left, Right, Top, Bottom
Returns:
List[OutpaintExpansion]
"""
outpaint_selections_arr: List[OutpaintExpansion] = []
if outpaint_selections is None or len(outpaint_selections) == 0:
return []
for part in outpaint_selections:
if len(part) > 0:
for s in part.split(','):
try:
expansion = OutpaintExpansion(s)
outpaint_selections_arr.append(expansion)
except ValueError:
errs = InitErrorDetails(
type='enum',
loc=tuple('outpaint_selections'),
input=outpaint_selections,
ctx={
'expected': "str, comma separated Left, Right, Top, Bottom"
})
raise RequestValidationError from errs
return outpaint_selections_arr
def image_prompt_parser(image_prompts_config: List[Tuple]) -> List[ImagePrompt]:
"""
Image prompt parser, Convert to List[ImagePrompt]
Args:
image_prompts_config: List[Tuple]
e.g. ('image1.jpg', 0.5, 1.0, 'normal'), ('image2.jpg', 0.5, 1.0, 'normal')
returns:
List[ImagePrompt]
"""
image_prompts: List[ImagePrompt] = []
if image_prompts_config is None or len(image_prompts_config) == 0:
return []
for config in image_prompts_config:
cn_img, cn_stop, cn_weight, cn_type = config
image_prompts.append(ImagePrompt(
cn_img=cn_img,
cn_stop=cn_stop,
cn_weight=cn_weight,
cn_type=cn_type))
return image_prompts