fix
Browse files
README.md
CHANGED
|
@@ -22,11 +22,11 @@ It is the average of the precision scores computer after each relevant document
|
|
| 22 |
>>> my_new_module = evaluate.load("map")
|
| 23 |
>>> references= [json.dumps({"q_1":{"d_1":1, "d_2":2} }),
|
| 24 |
json.dumps({"q_2":{"d_2":1, "d_3":2, "d_5":3}})]
|
| 25 |
-
>>> predictions = [json.dumps({"q_1": { "d_1": 0.
|
| 26 |
json.dumps({"q_2": {"d_2": 0.9, "d_1": 0.8, "d_5": 0.7, "d_3": 0.3}})]
|
| 27 |
>>> results = my_new_module.compute(references=references, predictions=predictions)
|
| 28 |
>>> print(results)
|
| 29 |
-
{'map': 0
|
| 30 |
```
|
| 31 |
### Inputs
|
| 32 |
- **predictions:** a list of dictionaries where each dictionary consists of document relevancy scores produced by the model for a given query. One dictionary per query. The dictionaries should be converted to string.
|
|
|
|
| 22 |
>>> my_new_module = evaluate.load("map")
|
| 23 |
>>> references= [json.dumps({"q_1":{"d_1":1, "d_2":2} }),
|
| 24 |
json.dumps({"q_2":{"d_2":1, "d_3":2, "d_5":3}})]
|
| 25 |
+
>>> predictions = [json.dumps({"q_1": { "d_1": 0.8, "d_2": 0.9}}),
|
| 26 |
json.dumps({"q_2": {"d_2": 0.9, "d_1": 0.8, "d_5": 0.7, "d_3": 0.3}})]
|
| 27 |
>>> results = my_new_module.compute(references=references, predictions=predictions)
|
| 28 |
>>> print(results)
|
| 29 |
+
{'map': 1.0}
|
| 30 |
```
|
| 31 |
### Inputs
|
| 32 |
- **predictions:** a list of dictionaries where each dictionary consists of document relevancy scores produced by the model for a given query. One dictionary per query. The dictionaries should be converted to string.
|
map.py
CHANGED
|
@@ -54,11 +54,11 @@ Examples:
|
|
| 54 |
>>> my_new_module = evaluate.load("map")
|
| 55 |
>>> references= [json.dumps({"q_1":{"d_1":1, "d_2":2} }),
|
| 56 |
json.dumps({"q_2":{"d_2":1, "d_3":2, "d_5":3}})]
|
| 57 |
-
>>> predictions = [json.dumps({"q_1": { "d_1": 0.
|
| 58 |
json.dumps({"q_2": {"d_2": 0.9, "d_1": 0.8, "d_5": 0.7, "d_3": 0.3}})]
|
| 59 |
>>> results = my_new_module.compute(references=references, predictions=predictions)
|
| 60 |
>>> print(results)
|
| 61 |
-
{'
|
| 62 |
"""
|
| 63 |
|
| 64 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
|
@@ -74,7 +74,7 @@ class map(evaluate.Metric):
|
|
| 74 |
features=datasets.Features({
|
| 75 |
'predictions': datasets.Value("string"),
|
| 76 |
'references': datasets.Value("string"),
|
| 77 |
-
'k': datasets.Value("int"
|
| 78 |
}),
|
| 79 |
# Homepage of the module for documentation
|
| 80 |
reference_urls=["https://amenra.github.io/ranx/"]
|
|
|
|
| 54 |
>>> my_new_module = evaluate.load("map")
|
| 55 |
>>> references= [json.dumps({"q_1":{"d_1":1, "d_2":2} }),
|
| 56 |
json.dumps({"q_2":{"d_2":1, "d_3":2, "d_5":3}})]
|
| 57 |
+
>>> predictions = [json.dumps({"q_1": { "d_1": 0.8, "d_2": 0.9}}),
|
| 58 |
json.dumps({"q_2": {"d_2": 0.9, "d_1": 0.8, "d_5": 0.7, "d_3": 0.3}})]
|
| 59 |
>>> results = my_new_module.compute(references=references, predictions=predictions)
|
| 60 |
>>> print(results)
|
| 61 |
+
{'recall': 1.0}
|
| 62 |
"""
|
| 63 |
|
| 64 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
|
|
|
| 74 |
features=datasets.Features({
|
| 75 |
'predictions': datasets.Value("string"),
|
| 76 |
'references': datasets.Value("string"),
|
| 77 |
+
'k': datasets.Value("int")
|
| 78 |
}),
|
| 79 |
# Homepage of the module for documentation
|
| 80 |
reference_urls=["https://amenra.github.io/ranx/"]
|