Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from PIL import Image | |
| from modules import devices | |
| from modules.shared import opts | |
| from modules.control.util import HWC3, resize_image | |
| from .models.mbv2_mlsd_large import MobileV2_MLSD_Large | |
| from .utils import pred_lines | |
| class MLSDdetector: | |
| def __init__(self, model): | |
| self.model = model | |
| def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None): | |
| if pretrained_model_or_path == "lllyasviel/ControlNet": | |
| filename = filename or "annotator/ckpts/mlsd_large_512_fp32.pth" | |
| else: | |
| filename = filename or "mlsd_large_512_fp32.pth" | |
| if os.path.isdir(pretrained_model_or_path): | |
| model_path = os.path.join(pretrained_model_or_path, filename) | |
| else: | |
| model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir) | |
| model = MobileV2_MLSD_Large() | |
| model.load_state_dict(torch.load(model_path), strict=True) | |
| model.eval() | |
| return cls(model) | |
| def to(self, device): | |
| self.model.to(device) | |
| return self | |
| def __call__(self, input_image, thr_v=0.1, thr_d=0.1, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs): | |
| self.model.to(devices.device) | |
| if not isinstance(input_image, np.ndarray): | |
| input_image = np.array(input_image, dtype=np.uint8) | |
| input_image = HWC3(input_image) | |
| input_image = resize_image(input_image, detect_resolution) | |
| assert input_image.ndim == 3 | |
| img = input_image | |
| img_output = np.zeros_like(img) | |
| try: | |
| lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) | |
| for line in lines: | |
| x_start, y_start, x_end, y_end = [int(val) for val in line] | |
| cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) | |
| except Exception: | |
| pass | |
| detected_map = img_output[:, :, 0] | |
| detected_map = HWC3(detected_map) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, _C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
| if output_type == "pil": | |
| detected_map = Image.fromarray(detected_map) | |
| if opts.control_move_processor: | |
| self.model.to('cpu') | |
| return detected_map | |