cbensimon HF Staff commited on
Commit
152019b
·
verified ·
1 Parent(s): 35ee5b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -14
app.py CHANGED
@@ -2,7 +2,6 @@ import os
2
  import subprocess
3
  import sys
4
  import io
5
- from kernels import get_kernel
6
  import gradio as gr
7
  import numpy as np
8
  import random
@@ -38,14 +37,11 @@ def remote_text_encoder(prompts):
38
  return prompt_embeds
39
 
40
  # Load model
41
- fa3_kernel = get_kernel("kernels-community/flash-attn3", revision="fake-ops-return-probs")
42
-
43
  repo_id = "black-forest-labs/FLUX.2-dev"
44
 
45
  dit = Flux2Transformer2DModel.from_pretrained(
46
  repo_id,
47
  subfolder="transformer",
48
- attn_implementation=fa3_kernel,
49
  torch_dtype=torch.bfloat16
50
  )
51
 
@@ -56,16 +52,18 @@ pipe = Flux2Pipeline.from_pretrained(
56
  torch_dtype=torch.bfloat16
57
  )
58
  pipe.to("cuda")
59
- # pipe.transformer.compile_repeated_blocks(dynamic=True)
60
-
61
- #optimize_pipeline_(
62
- # pipe,
63
- # prompt_embeds=remote_text_encoder("prompt").to("cuda"),
64
- # guidance_scale=2.5,
65
- # width=1024,
66
- # height=1024,
67
- # num_inference_steps=1,
68
- #)
 
 
69
 
70
  @spaces.GPU(duration=180)
71
  def infer(prompt, input_images, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
 
2
  import subprocess
3
  import sys
4
  import io
 
5
  import gradio as gr
6
  import numpy as np
7
  import random
 
37
  return prompt_embeds
38
 
39
  # Load model
 
 
40
  repo_id = "black-forest-labs/FLUX.2-dev"
41
 
42
  dit = Flux2Transformer2DModel.from_pretrained(
43
  repo_id,
44
  subfolder="transformer",
 
45
  torch_dtype=torch.bfloat16
46
  )
47
 
 
52
  torch_dtype=torch.bfloat16
53
  )
54
  pipe.to("cuda")
55
+
56
+ pipe.transformer.set_attention_backend("_flash_3_hub")
57
+
58
+ optimize_pipeline_(
59
+ pipe,
60
+ image=[Image.new("RGB", (1024, 1024))],
61
+ prompt_embeds = remote_text_encoder("prompt").to("cuda"),
62
+ guidance_scale=2.5,
63
+ width=1024,
64
+ height=1024,
65
+ num_inference_steps=1
66
+ )
67
 
68
  @spaces.GPU(duration=180)
69
  def infer(prompt, input_images, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):