File size: 18,952 Bytes
18b0fa5
3aea7c6
18b0fa5
 
3aea7c6
 
 
18b0fa5
3aea7c6
 
 
18b0fa5
3aea7c6
18b0fa5
3aea7c6
18b0fa5
 
3aea7c6
 
 
 
18b0fa5
3aea7c6
18b0fa5
 
 
 
3aea7c6
18b0fa5
 
 
 
 
 
 
 
 
3aea7c6
 
18b0fa5
3aea7c6
18b0fa5
 
 
 
 
 
 
 
 
 
3aea7c6
18b0fa5
3aea7c6
18b0fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aea7c6
18b0fa5
3aea7c6
18b0fa5
 
 
 
 
3aea7c6
 
18b0fa5
3aea7c6
18b0fa5
3aea7c6
 
18b0fa5
3aea7c6
18b0fa5
 
 
 
 
 
3aea7c6
18b0fa5
 
 
3aea7c6
18b0fa5
 
3aea7c6
18b0fa5
3aea7c6
 
18b0fa5
3aea7c6
 
18b0fa5
3aea7c6
18b0fa5
 
3aea7c6
18b0fa5
 
 
3aea7c6
18b0fa5
 
 
 
 
 
3aea7c6
18b0fa5
 
 
 
3aea7c6
18b0fa5
3aea7c6
18b0fa5
3aea7c6
18b0fa5
3aea7c6
 
18b0fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aea7c6
 
18b0fa5
 
 
 
 
3aea7c6
18b0fa5
 
 
3aea7c6
 
18b0fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aea7c6
 
 
18b0fa5
 
 
 
3aea7c6
18b0fa5
 
 
3aea7c6
 
18b0fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aea7c6
 
18b0fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aea7c6
18b0fa5
3aea7c6
 
18b0fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aea7c6
 
 
 
 
18b0fa5
3aea7c6
 
 
 
 
18b0fa5
 
3aea7c6
18b0fa5
3aea7c6
 
 
 
18b0fa5
3aea7c6
18b0fa5
 
 
 
 
3aea7c6
18b0fa5
3aea7c6
 
18b0fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aea7c6
 
 
18b0fa5
3aea7c6
18b0fa5
 
 
 
 
 
 
3aea7c6
 
 
18b0fa5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
# LeRobot Arena - Robot Control Architecture v2.0

> **Master-Slave Pattern for Scalable Robot Control**  
> A revolutionary architecture that separates command generation (Masters) from execution (Slaves), enabling sophisticated robot control scenarios from simple manual operation to complex multi-robot coordination.

## ๐Ÿ—๏ธ Architecture Overview

The architecture follows a **Master-Slave Pattern** with complete separation of concerns:

```
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Web Frontend  โ”‚    โ”‚  RobotManager    โ”‚    โ”‚    Masters      โ”‚
โ”‚                 โ”‚โ—„โ”€โ”€โ–บโ”‚                  โ”‚โ—„โ”€โ”€โ–บโ”‚                 โ”‚
โ”‚ โ€ข 3D Visualization   โ”‚ โ€ข Robot Creation โ”‚    โ”‚ โ€ข USB Master    โ”‚
โ”‚ โ€ข Manual Controlโ”‚    โ”‚ โ€ข Master/Slave   โ”‚    โ”‚ โ€ข Remote Server โ”‚
โ”‚ โ€ข Monitoring    โ”‚    โ”‚   Orchestration  โ”‚    โ”‚ โ€ข Mock Sequence โ”‚
โ”‚ (disabled when  โ”‚    โ”‚ โ€ข State Sync     โ”‚    โ”‚   (1 per robot) โ”‚
โ”‚  master active) โ”‚    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜             โ”‚
                                โ–ผ
                       โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                       โ”‚   Robot Class    โ”‚โ—„โ”€โ”€โ–บโ”‚     Slaves      โ”‚
                       โ”‚                  โ”‚    โ”‚                 โ”‚
                       โ”‚ โ€ข Joint States   โ”‚    โ”‚ โ€ข USB Robot     โ”‚
                       โ”‚ โ€ข URDF Model     โ”‚    โ”‚ โ€ข Remote Robot  โ”‚
                       โ”‚ โ€ข Command Queue  โ”‚    โ”‚ โ€ข WebSocket     โ”‚
                       โ”‚ โ€ข Calibration    โ”‚    โ”‚   (N per robot) โ”‚
                       โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                โ”‚
                                โ–ผ
                       โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                       โ”‚  Python Backend  โ”‚
                       โ”‚                  โ”‚
                       โ”‚ โ€ข WebSocket API  โ”‚
                       โ”‚ โ€ข Connection Mgr โ”‚
                       โ”‚ โ€ข Robot Manager  โ”‚
                       โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
```

### Control Flow States

```
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    Master Connected    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Manual Mode   โ”‚ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–บ โ”‚  Master Mode    โ”‚
โ”‚                 โ”‚                         โ”‚                 โ”‚
โ”‚ โœ… Panel Active  โ”‚                         โ”‚ โŒ Panel Locked  โ”‚
โ”‚ โœ… Direct Controlโ”‚                         โ”‚ โœ… Master Commandsโ”‚
โ”‚ โŒ No Master     โ”‚                         โ”‚ โœ… All Slaves Execโ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ—„โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                     Master Disconnected
```

## ๐ŸŽฏ Core Concepts

### Masters (Command Sources)
**Purpose**: Generate and provide robot control commands

| Type | Description | Connection | Use Case |
|------|-------------|------------|----------|
| **USB Master** | Physical robot as command source | USB/Serial | Teleoperation, motion teaching |
| **Remote Server** | WebSocket/HTTP command reception | Network | External control systems |
| **Mock Sequence** | Predefined movement patterns | Internal | Testing, demonstrations |

**Key Rules**:
- ๐Ÿ”’ **Exclusive Control**: Only 1 master per robot
- ๐Ÿšซ **Panel Lock**: Manual control disabled when master active
- ๐Ÿ”„ **Seamless Switch**: Masters can be swapped dynamically

### Slaves (Execution Targets)
**Purpose**: Execute commands on physical or virtual robots

| Type | Description | Connection | Use Case |
|------|-------------|------------|----------|
| **USB Slave** | Physical robot control | USB/Serial | Hardware execution |
| **Remote Server Slave** | Network robot control | WebSocket | Distributed robots |
| **WebSocket Slave** | Real-time WebSocket execution | WebSocket | Cloud robots |

**Key Rules**:
- ๐Ÿ”ข **Multiple Allowed**: N slaves per robot
- ๐ŸŽฏ **Parallel Execution**: All slaves execute same commands
- ๐Ÿ”„ **Independent Operation**: Slaves can fail independently

### Architecture Comparison

| Aspect | v1.0 (Single Driver) | v2.0 (Master-Slave) |
|--------|---------------------|---------------------|
| **Connection Model** | 1 Driver โ†” 1 Robot | 1 Master + N Slaves โ†” 1 Robot |
| **Command Source** | Always UI Panel | Master OR UI Panel |
| **Execution Targets** | Single Connection | Multiple Parallel |
| **Control Hierarchy** | Flat | Hierarchical |
| **Scalability** | Limited | Unlimited |

## ๐Ÿ“ Project Structure

### Frontend Architecture (TypeScript + Svelte)
```
src/lib/robot/
โ”œโ”€โ”€ Robot.svelte.ts              # Individual robot master-slave coordination
โ”œโ”€โ”€ RobotManager.svelte.ts       # Global robot orchestration
โ””โ”€โ”€ drivers/
    โ”œโ”€โ”€ USBMaster.ts             # Physical robot as command source
    โ”œโ”€โ”€ RemoteServerMaster.ts    # WebSocket command reception
    โ”œโ”€โ”€ USBSlave.ts              # Physical robot execution
    โ”œโ”€โ”€ RemoteServerSlave.ts     # Network robot execution
    โ””โ”€โ”€ WebSocketSlave.ts        # Real-time WebSocket execution

src/lib/types/
โ”œโ”€โ”€ robotDriver.ts               # Master/Slave interfaces
โ””โ”€โ”€ robot.ts                     # Robot state management
```

### Backend Architecture (Python + FastAPI)
```
src-python/src/
โ”œโ”€โ”€ main.py                      # FastAPI server + WebSocket endpoints
โ”œโ”€โ”€ robot_manager.py             # Server-side robot lifecycle
โ”œโ”€โ”€ connection_manager.py        # WebSocket connection handling
โ””โ”€โ”€ models.py                    # Pydantic data models
```

## ๐ŸŽฎ Usage Examples

### Basic Robot Setup

```typescript
import { robotManager } from "$lib/robot/RobotManager.svelte";

// Create robot from URDF
const robot = await robotManager.createRobot("demo-arm", {
  urdfPath: "/robots/so-arm100/robot.urdf",
  jointNameIdMap: { "Rotation": 1, "Pitch": 2, "Elbow": 3 },
  restPosition: { "Rotation": 0, "Pitch": 0, "Elbow": 0 }
});

// Add execution targets (slaves)
await robotManager.connectUSBSlave("demo-arm");           // Real hardware
await robotManager.connectRemoteServerSlave("demo-arm");  // Network robot

// Connect command source (master) - panel becomes locked
await robotManager.connectUSBMaster("demo-arm"); 

// Result: USB master controls both USB and Remote slaves
```

### Master Switching Workflow

```typescript
const robot = robotManager.getRobot("my-robot");

// Start with manual control
console.log(robot.manualControlEnabled); // โœ… true

// Switch to USB master (robot becomes command source)
await robotManager.connectUSBMaster("my-robot");
console.log(robot.manualControlEnabled); // โŒ false (panel locked)

// Switch to remote control
await robotManager.disconnectMaster("my-robot");
await robotManager.connectMaster("my-robot", {
  type: "remote-server",
  url: "ws://robot-controller:8080/ws"
});

// Restore manual control
await robotManager.disconnectMaster("my-robot");
console.log(robot.manualControlEnabled); // โœ… true (panel restored)
```

## ๐Ÿ”Œ Driver Implementations

### USB Master Driver

**Physical robot as command source for teleoperation**

```typescript
// USBMaster.ts - Core implementation
export class USBMaster implements MasterDriver {
  readonly type = "master" as const;
  private feetechDriver: FeetechSerialDriver;
  private pollIntervalId?: number;

  async connect(): Promise<void> {
    // Initialize feetech.js serial connection
    this.feetechDriver = new FeetechSerialDriver({
      port: this.config.port || await this.detectPort(),
      baudRate: this.config.baudRate || 115200
    });
    
    await this.feetechDriver.connect();
    this.startPolling();
  }

  private startPolling(): void {
    this.pollIntervalId = setInterval(async () => {
      try {
        // Read current joint positions from hardware
        const jointStates = await this.readAllJoints();
        
        // Convert to robot commands
        const commands = this.convertToCommands(jointStates);
        
        // Emit commands to slaves
        this.notifyCommand(commands);
      } catch (error) {
        console.error('USB Master polling error:', error);
      }
    }, this.config.pollInterval || 100);
  }

  private async readAllJoints(): Promise<DriverJointState[]> {
    const states: DriverJointState[] = [];
    
    for (const [jointName, servoId] of Object.entries(this.jointMap)) {
      const position = await this.feetechDriver.readPosition(servoId);
      states.push({
        name: jointName,
        servoId,
        type: "revolute",
        virtualValue: position,
        realValue: position
      });
    }
    
    return states;
  }
}
```

**Usage Pattern:**
- Connect USB robot as master
- Physical robot becomes the command source
- Move robot manually โ†’ slaves follow the movement
- Ideal for: Teleoperation, motion teaching, demonstration recording

### USB Slave Driver

**Physical robot as execution target**

```typescript
// USBSlave.ts - Core implementation
export class USBSlave implements SlaveDriver {
  readonly type = "slave" as const;
  private feetechDriver: FeetechSerialDriver;
  private calibrationOffsets: Map<string, number> = new Map();

  async executeCommand(command: RobotCommand): Promise<void> {
    for (const joint of command.joints) {
      const servoId = this.getServoId(joint.name);
      if (!servoId) continue;

      // Apply calibration offset
      const offset = this.calibrationOffsets.get(joint.name) || 0;
      const adjustedValue = joint.value + offset;

      // Send to hardware via feetech.js
      await this.feetechDriver.writePosition(servoId, adjustedValue, {
        speed: joint.speed || 100,
        acceleration: 50
      });
    }
  }

  async readJointStates(): Promise<DriverJointState[]> {
    const states: DriverJointState[] = [];
    
    for (const joint of this.jointStates) {
      const position = await this.feetechDriver.readPosition(joint.servoId);
      const offset = this.calibrationOffsets.get(joint.name) || 0;
      
      states.push({
        ...joint,
        realValue: position - offset // Remove offset for accurate state
      });
    }
    
    return states;
  }

  async calibrate(): Promise<void> {
    console.log('Calibrating USB robot...');
    
    for (const joint of this.jointStates) {
      // Read current hardware position
      const currentPos = await this.feetechDriver.readPosition(joint.servoId);
      
      // Calculate offset: desired_rest - actual_position
      const offset = joint.restPosition - currentPos;
      this.calibrationOffsets.set(joint.name, offset);
      
      console.log(`Joint ${joint.name}: offset=${offset.toFixed(1)}ยฐ`);
    }
  }
}
```

**Features:**
- Direct hardware control via feetech.js
- Real position feedback
- Calibration offset support
- Smooth motion interpolation

### Remote Server Master

**Network command reception via WebSocket**

```typescript
// RemoteServerMaster.ts - Core implementation
export class RemoteServerMaster implements MasterDriver {
  readonly type = "master" as const;
  private websocket?: WebSocket;
  private reconnectAttempts = 0;

  async connect(): Promise<void> {
    const wsUrl = `${this.config.url}/ws/master/${this.robotId}`;
    this.websocket = new WebSocket(wsUrl);

    this.websocket.onopen = () => {
      console.log(`Remote master connected: ${wsUrl}`);
      this.reconnectAttempts = 0;
      this.updateStatus({ isConnected: true });
    };

    this.websocket.onmessage = (event) => {
      try {
        const message = JSON.parse(event.data);
        this.handleServerMessage(message);
      } catch (error) {
        console.error('Failed to parse server message:', error);
      }
    };

    this.websocket.onclose = () => {
      this.updateStatus({ isConnected: false });
      this.attemptReconnect();
    };
  }

  private handleServerMessage(message: any): void {
    switch (message.type) {
      case 'command':
        // Convert server message to robot command
        const command: RobotCommand = {
          timestamp: Date.now(),
          joints: message.data.joints.map((j: any) => ({
            name: j.name,
            value: j.value,
            speed: j.speed
          }))
        };
        this.notifyCommand([command]);
        break;

      case 'sequence':
        // Handle command sequence
        const sequence: CommandSequence = message.data;
        this.notifySequence(sequence);
        break;
    }
  }

  async sendSlaveStatus(slaveStates: DriverJointState[]): Promise<void> {
    if (!this.websocket) return;

    const statusMessage = {
      type: 'slave_status',
      timestamp: new Date().toISOString(),
      robot_id: this.robotId,
      data: {
        joints: slaveStates.map(state => ({
          name: state.name,
          virtual_value: state.virtualValue,
          real_value: state.realValue
        }))
      }
    };

    this.websocket.send(JSON.stringify(statusMessage));
  }
}
```

**Protocol:**
```json
// Command from server to robot
{
  "type": "command",
  "timestamp": "2024-01-15T10:30:00Z",
  "data": {
    "joints": [
      { "name": "Rotation", "value": 45, "speed": 100 },
      { "name": "Elbow", "value": -30, "speed": 80 }
    ]
  }
}

// Status from robot to server
{
  "type": "slave_status",
  "timestamp": "2024-01-15T10:30:01Z",
  "robot_id": "robot-1",
  "data": {
    "joints": [
      { "name": "Rotation", "virtual_value": 45, "real_value": 44.8 },
      { "name": "Elbow", "virtual_value": -30, "real_value": -29.9 }
    ]
  }
}
```

### Remote Server Slave

**Network robot execution via WebSocket**

```typescript
// RemoteServerSlave.ts - Core implementation
export class RemoteServerSlave implements SlaveDriver {
  readonly type = "slave" as const;
  private websocket?: WebSocket;

  async executeCommand(command: RobotCommand): Promise<void> {
    if (!this.websocket) throw new Error('Not connected');

    const message = {
      type: 'command',
      timestamp: new Date().toISOString(),
      robot_id: this.config.robotId,
      data: {
        joints: command.joints.map(j => ({
          name: j.name,
          value: j.value,
          speed: j.speed
        }))
      }
    };

    this.websocket.send(JSON.stringify(message));
    
    // Wait for acknowledgment
    return new Promise((resolve, reject) => {
      const timeout = setTimeout(() => reject(new Error('Command timeout')), 5000);
      
      const messageHandler = (event: MessageEvent) => {
        const response = JSON.parse(event.data);
        if (response.type === 'command_ack') {
          clearTimeout(timeout);
          this.websocket?.removeEventListener('message', messageHandler);
          resolve();
        }
      };
      
      this.websocket.addEventListener('message', messageHandler);
    });
  }

  async readJointStates(): Promise<DriverJointState[]> {
    if (!this.websocket) throw new Error('Not connected');

    const message = {
      type: 'status_request',
      timestamp: new Date().toISOString(),
      robot_id: this.config.robotId
    };

    this.websocket.send(JSON.stringify(message));

    return new Promise((resolve, reject) => {
      const timeout = setTimeout(() => reject(new Error('Status timeout')), 3000);
      
      const messageHandler = (event: MessageEvent) => {
        const response = JSON.parse(event.data);
        if (response.type === 'joint_states') {
          clearTimeout(timeout);
          this.websocket?.removeEventListener('message', messageHandler);
          
          const states = response.data.joints.map((j: any) => ({
            name: j.name,
            servoId: j.servo_id,
            type: j.type,
            virtualValue: j.virtual_value,
            realValue: j.real_value
          }));
          
          resolve(states);
        }
      };
      
      this.websocket.addEventListener('message', messageHandler);
    });
  }
}
```

## ๐Ÿ”„ Command Flow Architecture

### Command Structure

```typescript
interface RobotCommand {
  timestamp: number;
  joints: {
    name: string;
    value: number;    // degrees for revolute, speed for continuous
    speed?: number;   // optional movement speed
  }[];
  duration?: number;  // optional execution time
  metadata?: Record<string, unknown>;
}
```

### Control Flow

1. **Master Generation**: Masters generate commands from various sources
2. **Robot Routing**: Robot class routes commands to all connected slaves
3. **Parallel Execution**: All slaves execute commands simultaneously
4. **State Feedback**: Slaves report back real joint positions
5. **Synchronization**: Robot maintains synchronized state across all slaves

### State Management

```typescript
// Robot.svelte.ts - Core state management
export interface ManagedJointState {
  name: string;
  urdfJoint: IUrdfJoint;
  servoId?: number;

  // State values
  virtualValue: number;      // What the UI shows
  realValue?: number;        // What hardware reports
  commandedValue: number;    // Last commanded value

  // Calibration
  calibrationOffset: number; // Hardware compensation
  restPosition: number;      // Safe default position

  // Synchronization
  lastVirtualUpdate: Date;
  lastRealUpdate?: Date;
  lastCommandUpdate?: Date;
}
```

## ๐Ÿ“Š Benefits Summary

| Benefit | Description | Impact |
|---------|-------------|---------|
| **๐Ÿ”’ Clear Control Hierarchy** | Masters provide commands exclusively, slaves execute in parallel | No command conflicts, predictable behavior |
| **๐Ÿ”„ Flexible Command Sources** | Easy switching between manual, automated, and remote control | Supports development, testing, and production |
| **๐Ÿ“ก Multiple Execution Targets** | Same commands executed on multiple robots simultaneously | Real hardware + simulation testing |
| **๐ŸŽ›๏ธ Automatic Panel Management** | UI automatically adapts to master presence | Intuitive user experience |
| **๐Ÿš€ Development Workflow** | Clear separation enables independent development | Faster iteration cycles |

---

**This architecture provides unprecedented flexibility for robot control, from simple manual operation to sophisticated multi-robot coordination, all with a clean, extensible, and production-ready design.**